

Communauté UNIVERSITÉ Grenoble Alpes

Anisotropic textures and lines within images Analysis, synthesis and super-resolution

18 octobre 2018

Kévin Polisano

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{\rm{B}}} \right)$

Presentation

Postdoc context

- Laboratoire d'Informatique de Grenoble (LIG)
- AMA group (dAta analysis, Modeling, mAchine learning)
- Collaborators: Eric Gaussier (LIG, AMA) Adeline Leclerc-Samson (LJK, SVH) Jean-Marc Francony (LSS, Régulations)
- Title : "Multi-level modeling of information diffusion and opinion dynamics"
- Project of the Data Institute

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{\rm{B}}}} \right)$

Presentation

PhD context

- Laboratoire Jean Kuntzmann (LJK)
- CVGI group (Calcul des Variations, Géométrie, Image)
- Supervisors : Valérie Perrier (Director) Marianne Clausel (Co-supervisor) Laurent Condat (Co-supervisor)
- Title : "Modeling anisotropic texture by the monogenic wavelet transform and super-resolution of 2-D lines", *supported on 2017-12-12.*
- ATER at Université Grenoble Alpes (2017-2018)

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{{\rm{A}}}} \right)$

Motivations

Kévin Polisano

AMA group

IG

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{D}}_{{\rm{A}}}} \right)$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Outline

Motivations

Modeling and analysis of local anisotropic textures

- From Brownian motion to random anisotropic fields
- The GAFBF model : localized H-sssi fields
- Wavelet-based definition of the notion of orientation for random fields

A convex approach for the super-resolution of 2-D lines

- Principle of super-resolution
- Modeling blurred lines and formulation of the inverse problem
- Resolution of the optimization problem and numerical experiments

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

Wiener stochastic integral = $\int f(x) \mathbf{W}(dx)$

Kévin Polisano

Seminar AMA group

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

Self-similarity

 $\{X(t)\}_{t\in\mathcal{T}}$ is self-similar of order H if $\forall \lambda \in \mathbb{R}$

$$\{X(\lambda t)\}_{t\in T} \stackrel{(fdd)}{=} \lambda^{H} \{X(t)\}_{t\in T}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

Self-similarity

 $\{X(t)\}_{t\in\mathcal{T}}$ is self-similar of order H if $\forall \lambda \in \mathbb{R}$

$$\{X(\lambda t)\}_{t\in\mathcal{T}}\stackrel{(fdd)}{=}\lambda^{H}\{X(t)\}_{t\in\mathcal{T}}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

Self-similarity

 $\{X(t)\}_{t\in\mathcal{T}}$ is self-similar of order H if $\forall \lambda \in \mathbb{R}$

$$X(\lambda t)\}_{t\in T} \stackrel{(fdd)}{=} \lambda^{H} \{X(t)\}_{t\in T}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

•
$$\mathbb{E}\left[(B^{H}(t) - B^{H}(s))^{2}\right] = |t - s|^{2H} \Rightarrow \text{indpt. increments}$$

fractional Brownian motion B^H

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

• $\mathbb{E}\left[(B^{H}(t) - B^{H}(s))^{2}\right] = |t - s|^{2H} \Rightarrow \text{stat. increments}$ • $\mathbb{R}(t, s) = \operatorname{Cov}(B^{H}(t), B^{H}(s)) = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

From Brownian to random anisotropic fields

Kévin Polisano

Seminar AMA group

From Brownian motion to random anisotropic fields

From Brownian to random anisotropic fields

Kévin Polisano Seminar AMA group

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Modèle de Bonami-Estrade

Kévin Polisano

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

Kévin Polisano

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

densité $f(\xi)$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(e^{j\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{\mathbb{1}_{[-\delta, \delta]}(\arg \boldsymbol{\xi} - \alpha_0)}{\|\boldsymbol{\xi}\|^{H+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Elementary field (EF) [H = 0.5, $\alpha_0 = \pi/6$]

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(e^{j\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{\mathbb{1}_{[-\delta, \delta]}(\arg \boldsymbol{\xi} - \alpha_0)}{\|\boldsymbol{\xi}\|^{H+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Elementary field (EF) [H = 0.5, $\alpha_0 = \pi/6$]

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model of Bonami-Estrade

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(e^{j\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{\mathbb{1}_{[-\delta, \delta]}(\arg \boldsymbol{\xi} - \alpha_0)}{\|\boldsymbol{\xi}\|^{H+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Elementary field (EF) [H = 0.5, $\alpha_0 = \pi/6$]

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

State of the art : anisotropic Gaussian fields

- Fractional Brownian sheet (FBS) (Kamont, 1995), (Léger and Pontier, 1999), (Ayache et al., 2002)
- H-sssi fields (Benassi et coll., 1997)
- Model of Bonami and Estrade (Bonami and Estrade, 2003)
- Operator scaling Gaussian random fields (OSGRF) (Schertzer and Lovejoy, 1985), (Biermé et. al, 2007)
- Model of Xue, Xiao, Li (Xue and Xiao, 2011), (Li and Xiao, 2011)
- • •

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

State of the art : anisotropic Gaussian fields

- Fractional Brownian sheet (FBS) (Kamont, 1995), (Léger and Pontier, 1999), (Ayache et al., 2002)
- H-sssi fields (Benassi et coll., 1997)
- Model of Bonami and Estrade (Bonami and Estrade, 2003)
- Operator scaling Gaussian random fields (OSGRF) (Schertzer and Lovejoy, 1985), (Biermé et. al, 2007)
- Model of Xue, Xiao, Li (Xue and Xiao, 2011), (Li and Xiao, 2011)
- • •

\Rightarrow no class of fields with controlled local anisotropy

State of the art : anisotropic Gaussian fields

- Fractional Brownian sheet (FBS) (Kamont, 1995), (Léger and Pontier, 1999), (Ayache et al., 2002)
- H-sssi fields (Benassi et coll., 1997)
- Model of Bonami and Estrade (Bonami and Estrade, 2003)
- Operator scaling Gaussian random fields (OSGRF) (Schertzer and Lovejoy, 1985), (Biermé et. al, 2007)
- Model of Xue, Xiao, Li (Xue and Xiao, 2011), (Li and Xiao, 2011)
 - \Rightarrow no class of fields with controlled local anisotropy

 \Rightarrow contribution : two new classes of this type the (GAFBF) and the (WAFBF)

From Brownian motion to random anisotropic fields **The GAFBF model** : localized H-sssi fields Definition of the notion of orientation for random fields

From H-sssi fields to GAFBF

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(\mathrm{e}^{\mathrm{j}\langle \mathbf{x}, \, \boldsymbol{\xi}
angle} - 1 \right) f^{1/2}(\boldsymbol{\xi}) \, \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

If X is H-self-similar, that is $X(\lambda x) = \lambda^H X(x)$, one has:

with homogeneous anisotropic function $\boldsymbol{\xi}\mapsto C(\boldsymbol{\xi})$

From Brownian motion to random anisotropic fields **The GAFBF model** : localized H-sssi fields Definition of the notion of orientation for random fields

Model with prescribed orientations and regularities

New model: a localized and multifractional version of H-sssi fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(\mathrm{e}^{\mathrm{j} \langle \mathbf{x}, \, \boldsymbol{\xi}
angle} - 1
ight) f^{1/2}(\mathbf{x}, \boldsymbol{\xi}) \widehat{\mathbf{W}}(\mathrm{d} \boldsymbol{\xi})$$

Kévin Polisano

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Model with prescribed local orientation

$$B_{\alpha,\delta}^{H}(\boldsymbol{x}) = \int_{\mathbb{R}^{2}} \left(\mathrm{e}^{\mathrm{j}\langle \boldsymbol{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{\mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi} - \alpha(\boldsymbol{x}))}{\left\| \boldsymbol{\xi} \right\|^{H+1}} \widehat{\boldsymbol{\mathsf{W}}}(\mathrm{d}\boldsymbol{\xi})$$

localized elementary field (LAFBF) $[H = 0.8, \alpha(x_1, x_2) = -\pi/2 + x_1]$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

The tangent field: a tool for analysis and synthesis

A tool for analysis (Lévy-Vehel, 1995), (Falconer, 2002) :

$$\left\{\lim_{\rho\to 0}\frac{X(\boldsymbol{x_0}+\rho\boldsymbol{x})-X(\boldsymbol{x_0})}{\rho^{h(\boldsymbol{x_0})}}\right\}_{\boldsymbol{x}\in\mathbb{R}^2}\stackrel{d}{=}\left\{Y_{\boldsymbol{x_0}}(\boldsymbol{x})\right\}_{\boldsymbol{x}\in\mathbb{R}^2}$$

Roughly speaking Y_{x_0} is the "local form" of X at point x_0 .

A tool for synthesis (Lévy-Véhel, 1995), (Benassi, 1997) :

$$X(\mathbf{x}_0) \leftarrow Y_{\mathbf{x}_0}(\mathbf{x} = \mathbf{x}_0)$$

 \Rightarrow If Y is "localizable", all local anisotropy characteristics are defined and herited from its tangent field.

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Assumptions of the GAFBF

Assumptions (\mathcal{H})

•
$$h$$
 is β -Hölder, such that $a = \inf_{x \in \mathbb{R}^2} h(x) > 0$,
 $b = \sup_{x \in \mathbb{R}^2} h(x)$ and $b < \beta \le 1$.

•
$$(x,\xi) \mapsto C(x,\xi)$$
 is bounded $C(x,\xi) \leqslant M, \forall (x,\xi)$.

•
$$\boldsymbol{\xi} \mapsto C(\boldsymbol{x}, \boldsymbol{\xi})$$
 is even $C(\boldsymbol{x}, -\boldsymbol{\xi}) = C(\boldsymbol{x}, \boldsymbol{\xi}).$

•
$$\boldsymbol{\xi} \mapsto C(\boldsymbol{x}, \boldsymbol{\xi})$$
 homogeneous $C(\boldsymbol{x}, \rho \boldsymbol{\xi}) = C(\boldsymbol{x}, \boldsymbol{\xi}), \forall \rho$.

•
$$\boldsymbol{x} \mapsto C(\boldsymbol{x}, \boldsymbol{\xi})$$
 is continuous and $\exists \eta, \ \beta \leq \eta \leq 1, \ \forall \boldsymbol{x}$

$$\sup_{\mathbf{z}\in B(\mathbf{0},1)} \|\mathbf{z}\|^{-2\eta} \int_{\mathbb{S}^1} \left[C(\mathbf{x}+\mathbf{z},\mathbf{\Theta}) - C(\mathbf{x},\mathbf{\Theta}) \right]^2 \mathrm{d}\mathbf{\Theta} \le A_{\mathbf{x}} < \infty$$

From Brownian motion to random anisotropic fields **The GAFBF model : localized H-sssi fields** Definition of the notion of orientation for random fields

Tangent field of the GAFBF

Let X be the GAFBF defined by

$$X(\boldsymbol{x}) = \int_{\mathbb{R}^2} \left(\mathrm{e}^{\mathrm{j} \langle \boldsymbol{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{C(\boldsymbol{x}, \boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^{h(\boldsymbol{x})+1}} \widehat{\boldsymbol{\mathsf{W}}}(\mathrm{d}\boldsymbol{\xi})$$

Theorem (Polisano et coll., 2017)

If X satisfies the assumptions (\mathcal{H}) , then X admits in every point $x_0 \in \mathbb{R}^2$ a tangent field Y_{x_0} given by:

$$egin{aligned} Y_{\mathbf{x_0}}(\mathbf{x}) &= \int_{\mathbb{R}^2} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x},\, \boldsymbol{\xi}
angle} - 1) f^{1/2}(\mathbf{x_0}, \boldsymbol{\xi}) \widehat{\mathbf{W}}(\mathrm{d} \boldsymbol{\xi}) \;, \ &= \int_{\mathbb{R}^2} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x},\, \boldsymbol{\xi}
angle} - 1) rac{\mathcal{C}(\mathbf{x_0}, \boldsymbol{\xi})}{\| \boldsymbol{\xi} \|^{h(\mathbf{x_0})+1}} \widehat{\mathbf{W}}(\mathrm{d} \boldsymbol{\xi}) \;. \end{aligned}$$

From Brownian motion to random anisotropic fields **The GAFBF model : localized H-sssi fields** Definition of the notion of orientation for random fields

Tangent field of the GAFBF

Let X be the GAFBF defined by

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} \left(e^{j \langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1 \right) \frac{C(\mathbf{x}, \boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^{h(\mathbf{x})+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Theorem (Polisano et coll., 2017)

If X satisfies the assumptions (\mathcal{H}) , then X admits in every point $x_0 \in \mathbb{R}^2$ a tangent field Y_{x_0} given by:

$$\begin{split} Y_{\mathbf{x}_{\mathbf{0}}}(\mathbf{x}) &= \int_{\mathbb{R}^{2}} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1) f^{1/2}(\mathbf{x}_{\mathbf{0}}, \boldsymbol{\xi}) \widehat{\mathsf{W}}(\mathrm{d}\boldsymbol{\xi}) \;, \\ \mathsf{H}\text{-sssi field} &= \int_{\mathbb{R}^{2}} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1) \frac{\mathcal{C}_{\mathbf{x}_{\mathbf{0}}}(\boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^{h(\mathbf{x}_{\mathbf{0}})+1}} \widehat{\mathsf{W}}(\mathrm{d}\boldsymbol{\xi}) \;. \end{split}$$
From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Simulation of the LAFBF

Kévin Polisano

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Simulation of the LAFBF

- Linear variation of the orientations $\alpha(\mathbf{x})$ along (Ox)
- Linear variation of the directionality $\delta(\mathbf{x})$ along (Ox)
- Linear variation of the regularity h(x) along (Ox)

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Local orientation of a deterministic function

Gradient operator

The gradient operator $\nabla : f \mapsto (\partial_{x_1} f, \partial_{x_2} f)$, with the notation $\partial_{x_1} f : \mathbf{x} = (x_1, x_2) \mapsto \frac{\partial f}{\partial x_1}(\mathbf{x})$, is defined in Fourier domain by:

$$\widehat{\partial_{\mathsf{x}_1}f}(\omega) = -\mathrm{j}\omega_1\widehat{f}(\omega), \quad \widehat{\partial_{\mathsf{x}_2}f}(\omega) = -\mathrm{j}\omega_2\widehat{f}(\omega)$$

 \Rightarrow Orientation :

$$n(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Local orientation of a deterministic function

Riesz transform and monogenic signal (Felsberg, 2001)

The Riesz operator \mathcal{R} : $f \mapsto (\mathcal{R}_1 f, \mathcal{R}_2 f)$ is defined by:

$$\widehat{\mathcal{R}_1 f}(\omega) = -\mathrm{j} rac{\omega_1}{\|\omega\|} \widehat{f}(\omega), \quad \widehat{\mathcal{R}_2 f}(\omega) = -\mathrm{j} rac{\omega_2}{\|\omega\|} \widehat{f}(\omega)$$

 \Rightarrow Orientation :

$$n(x) = rac{\mathcal{R}f(x)}{\|\mathcal{R}f(x)\|}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Orientation of a H-sssi field

Monogenic wavelet coefficients of a H-sssi field X

$$c_{i,\boldsymbol{k}}^{(\ell)}(X) = \langle X, \mathcal{R}_{\ell}\psi_{i,\boldsymbol{k}}\rangle = \int_{\mathbb{R}^2} \widehat{\mathcal{R}_{\ell}\psi_{i,\boldsymbol{k}}}(\boldsymbol{\xi}) C(\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-H-1} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Theorem (Polisano et al., 2017)

Let us define
$$c_{i,k}^{(\mathcal{R})}(X) = (c_{i,k}^{(1)}(X), c_{i,k}^{(2)}(X))^{\mathsf{T}}$$
, then:
 $\mathbb{E}[c_{i,k}^{(\mathcal{R})}(X)c_{i,k}^{(\mathcal{R})}(X)^*] \propto 2^{-2i(H+1)}\mathsf{J}_X$,

where \mathbf{J}_X is called the tensor structure of X defined by : $[\mathbf{J}_X]_{\ell_1\ell_2} = \int_{\Theta \in \mathbb{S}^1} \Theta_{\ell_1} \Theta_{\ell_2} \ C(\Theta)^2 \,\mathrm{d}\Theta, \quad \ell_1, \ell_2 \in \{1, 2\} \ .$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Orientation of a H-sssi field

Definition (Orientation and coherence index of a H-sssi field)

- The orientation n
 _X of X is given by the unit eigenvector associated to the largest of the eigenvalues λ₁, λ₂ of J_X
- The coherence index of X is defined by

$$\chi = \frac{|\lambda_2 - \lambda_1|}{\lambda_1 + \lambda_2}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Orientations of an elementary field

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Orientation of a localizable Gaussian field

Localizable Gaussian field

A random field $X = \{X(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$ is said to be localizable, if it admits a tangent field at every point $\mathbf{x} \in \mathbb{R}^2$. References : (Lévy-Véhel, 1995), (Benassi et coll., 1997), (Falconer, 2002).

Definition (Local orientation of a localizable Gaussian field)

The local orientation $\vec{n}_X(x_0)$ of the localizable Gaussian field X at point x_0 is the orientation of its tangent field Y_{x_0} H-sssi :

$$ec{n}_X(x_0)\equivec{n}_{Y_{x_0}}$$

From Brownian motion to random anisotropic fields The GAFBF model : localized H-sssi fields Definition of the notion of orientation for random fields

Orientation of a localizable Gaussian field

Local orientation of the LAFBF X

The local orientation $\vec{n}_X(x_0)$ and the coherence index $\chi(x_0)$ of X at x_0 are those of the elementary field $X_{\alpha(x_0),\delta(x_0)}$:

rrinciple of super-resolution Aodeling blurred lines and the inverse problem convex minimization and numerical experiments

Outline

Motivations

Modeling and analysis of local anisotropic textures

- From Brownian motion to random anisotropic fields
- The GAFBF model : localized H-sssi fields
- Wavelet-based definition of the notion of orientation for random fields

A convex approach for the super-resolution of 2-D lines

- Principle of super-resolution
- Modeling blurred lines and formulation of the inverse problem
- Resolution of the optimization problem and numerical experiments

Principle of super-resolution

Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Diffraction and Rayleigh limit

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Super-resolution of 1-D impulses

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Super-resolution of 1-D impulses

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Discrete data on a grid

$$\mathbf{y} = \mathbf{y}(\tau_k), \quad \tau_k = k\Delta/N$$

LIG

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Discrete data on a grid

$$\mathbf{y} = \mathbf{y}(\mathbf{\tau}_{\mathbf{k}}), \quad \mathbf{\tau}_{\mathbf{k}} = \mathbf{k}\Delta/N$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Parcimonious reconstruction on the grid

$$\min_{\boldsymbol{c} \in \mathbb{R}^{K}} \frac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{c} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{c} \right\|_{0}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Parcimonious convex reconstruction on the grid

$$\min_{\boldsymbol{c} \in \mathbb{R}^{K}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{c}\|_{2}^{2} + \lambda \|\boldsymbol{c}\|_{1}$$

Principle of super-resolution

Parcimonious convex reconstruction on the grid

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Super-resolution of 1-D impulses on a grid

$$\begin{split} \min_{\boldsymbol{c} \in \mathbb{R}^{K}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{c}\|_{2}^{2} + \lambda \|\boldsymbol{c}\|_{1} \\ \boldsymbol{y} = \boldsymbol{y}(\tau_{k}), \quad \tau_{k} = k\Delta/N \longrightarrow \tilde{\boldsymbol{x}}_{k} \end{split}$$

I I G

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Super-resolution of 1-D impulses off-the-grid

$$x = \sum_{i=1}^{K} c_i \delta_{t_i}, \quad c_i \ge 0, \quad t_i \ge 0$$

Minimization (convex regularization)

$$\underset{\mu}{\arg\min} \frac{1}{2} \left\| y - \mathbf{A} \mu \right\|^2 + \lambda \left\| \mu \right\|_{\mathrm{TV}}$$

Reference : (Candès, Fernandez-Granda, 2012)

 $\|\mu\|_{\mathrm{TV}} = \int |f| \quad \|x\|_{\mathrm{TV}} = \|\boldsymbol{c}\|_{1}$

х

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiment

Super-resolution of 1-D impulses off-the-grid

$$(\mathcal{F}x)(\omega) = \sum_{i=1}^{K} c_i \mathrm{e}^{\mathrm{j} 2 \pi f_i \omega}, \quad c_i \geq 0, \quad t_i \geq 0$$

Minimization (convex regularization)

$$\arg\min_{x} \frac{1}{2} \|y - \mathbf{A}x\|^{2} + \lambda \|x\|_{\mathrm{TV}}$$

Reference : (Tang, Bhaskar, Recht et al., 2013)

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Super-resolution of 1-D impulses off-the-grid

$$\mathbf{x} = \sum_{i=1}^{K} c_i \mathbf{a}(f_i), \quad c_i \ge 0, \quad \mathbf{a}(f_i) \in \mathcal{A}$$

$$\mathcal{A} = \left\{ \mathbf{a}(f) \in \mathbb{C}^{N} \right\}, \quad [\mathbf{a}(f)]_{n} = e^{j2\pi fn}$$
$$\|\mathbf{x}\|_{\mathcal{A}} = \inf \left\{ \sum c_{\mathbf{a}} : \mathbf{x} = \sum c_{\mathbf{a}} \mathbf{a} \right\}$$

 $\begin{bmatrix} \mathbf{Z} \\ \mathbf{a} \in \mathbf{A} \end{bmatrix}$

$$\mathop{\arg\min}_{\mathbf{x}} \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|^2 + \lambda \left\| \mathbf{x} \right\|_{\mathcal{A}}$$

Reference : (Tang, Bhaskar, Recht et coll., 2013)

 $a \in A$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Enhance it ! Toward a 2-D super-resolution

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Enhance it ! Toward a 2-D super-resolution

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Enhance it ! Toward a 2-D super-resolution

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

$$y = \mathbf{A}x$$

Example (Operator)

- A = subsampling
- **A** = blurring
- …

y

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

Example (Operator)

- A = subsampling
- **A** = blurring
- ...

х

y

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

Example (Operator)

- A = subsampling
- **A** = blurring
- …

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

$$y = Ax + \epsilon$$

Example (Operator)

- A = subsampling
- **A** = blurring
- ...

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

$$\mathbf{y} - \mathbf{A}\mathbf{x} = \boldsymbol{\epsilon}$$

Example (Operator)

- A = subsampling
- **A** = blurring
- ...

Principle of super-resolution

Inverse problem

Minimization (data fidelity term)

This is an ill-posed problem :

$$\mathop{\arg\min}_{\mathbf{x}} \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|^2$$

Example (Operator)

- $\mathbf{A} = \text{subsampling}$
- $\mathbf{A} = \text{blurring}$

۲ ...

٧

Kévin Polisano

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

Minimization (convex regularization)

$$\arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda R(\mathbf{x})$$

•
$$R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{2}^{2}$$
 (Tikhonov, 1963)
• $R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1}$ (Rudin et al., 1992)
• $R(\mathbf{x}) = \|\mathbf{x}\|_{\mathcal{A}}$ (Chandrasekaran, 2010)

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

Minimization (convex regularization)

$$\underset{\mathbf{x}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda R(\mathbf{x})$$

•
$$R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{2}^{2}$$
 (Tikhonov, 1963)
• $R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1}$ (Rudin et al., 1992)
• $R(\mathbf{x}) = \|\mathbf{x}\|_{\mathcal{A}}$ (Chandrasekaran, 2010)

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

Minimization (convex regularization)

$$\underset{\mathbf{x}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda R(\mathbf{x})$$

•
$$R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{2}^{2}$$
 (Tikhonov, 1963)
• $R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1}$ (Rudin et coll., 1992)
• $R(\mathbf{x}) = \|\mathbf{x}\|_{\mathcal{A}}$ (Chandrasekaran, 2010)

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

Minimization (convex regularization)

$$\underset{\mathbf{x}}{\arg\min} \frac{1}{2} \left\| \mathbf{y} - \mathbf{A} \mathbf{x} \right\|^2 + \boxed{\lambda R(\mathbf{x})}$$

•
$$R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{2}^{2}$$

• $R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1}$
• $R(\mathbf{x}) = \|\mathbf{x}\|_{\mathcal{A}}$ parcimonious

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Inverse problem

Minimization (convex regularization)

$$\underset{\mathbf{x}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda R(\mathbf{x})$$

•
$$R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{2}^{2}$$

• $R(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1}$
• $R(\mathbf{x}) = \|\mathbf{x}\|_{\mathcal{A}}$ parcimonious

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

LIG

Modeling the perfect lines

$$x^{\sharp}: (t_1, t_2) \in \mathbb{P} \mapsto \sum_{k=1}^{K} \alpha_k \delta(\cos \theta_k (t_1 - \eta_k) + \sin \theta_k t_2)$$
$$\mathbf{b}^{\sharp}[n_1, n_2] = (x^{\sharp} * \phi)(n_1, n_2), \quad \phi(n_1, n_2) = \mathbf{g}[n_1]\mathbf{h}[n_2]$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Modeling the blurred lines

$$\hat{\mathbf{x}}^{\sharp}[m, n_{2}] = (\mathcal{F}_{1} \mathbf{x}^{\sharp})[m, n_{2}] = \sum_{k=1}^{K} c_{k} e^{j2\pi \left(\frac{\tan\theta_{k}}{W} n_{2} + \frac{\eta_{k}}{W}\right)m} c_{k} = \frac{\alpha_{k}}{\cos\theta_{k}} \ge 0$$
$$\hat{\mathbf{b}}^{\sharp}[m, :] = (\hat{\mathbf{g}}[m]\hat{\mathbf{x}}^{\sharp}[m, :]) * \mathbf{h} \to \mathbf{A}\hat{\mathbf{x}}^{\sharp} = \hat{\mathbf{b}}^{\sharp}$$

Kévin Polisano

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Reconstruction steps

29/37

LIG

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic decomposition of the columns

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = \sum_{k=1}^{K} c_k \mathrm{e}^{\mathrm{j}2\pi \left(\frac{\tan\theta_k}{W} n_2 + \frac{\eta_k}{W}\right)m}$$

$$\boldsymbol{I}_{n_2}^{\sharp} = \boldsymbol{\hat{x}}^{\sharp}[:, n_2] = \sum_{k=1}^{K} c_k \boldsymbol{a}(\boldsymbol{f}_{n_2, k}, \boldsymbol{0}), \quad [\boldsymbol{a}(f, \phi)]_i = \mathrm{e}^{\mathrm{j}(2\pi f i + \phi)} \in \mathcal{A}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic decomposition of the rows

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = \sum_{k=1}^{K} c_k \mathrm{e}^{\mathrm{j}2\pi \left(\frac{\tan\theta_k}{W}m\right)n_2 + \frac{2\pi\eta_k m}{W}}$$

$$\boldsymbol{t}_{m}^{\sharp} = \boldsymbol{\hat{x}}^{\sharp}[m, :] = \sum_{k=1}^{K} c_{k} \boldsymbol{a}(\boldsymbol{f}_{m,k}, \phi_{m,k})^{\mathsf{T}}, \quad [\boldsymbol{a}(f, \phi)]_{i} = \mathrm{e}^{\mathrm{j}(2\pi f i + \phi)} \in \mathcal{A}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic decomposition of the columns and rows

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = \sum_{k=1}^{K} c_k \mathrm{e}^{\mathrm{j}2\pi \left(\frac{\tan\theta_k}{W} n_2 + \frac{\eta_k}{W}\right)m}$$

\$I_{n_2}^{\sharp} = \sum_{k=1}^{K} c_k a(f_{n_2,k}, 0)\$ (columns of \$\hat{x}\$, without phase)
 \$t_m^{\sharp} = \sum_{k=1}^{K} c_k a(f_{m,k}, \phi_{m,k})^{T}\$ (rows of \$\hat{x}\$, with phase)

30/37

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic decomposition of one line (K = 1)

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = c_1 \mathrm{e}^{\mathrm{j} 2 \pi \left(rac{\mathrm{tan}\, heta_1}{W}\,n_2 + rac{\eta_1}{W}
ight) m}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic norms

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = \sum_{k=1}^{K} c_k \mathrm{e}^{\mathrm{j}2\pi \left(\frac{\tan\theta_k}{W}n_2 + \frac{\eta_k}{W}\right)m}, \quad c^{\star} = \sum_{k=1}^{K} c_k$$

\$I_{n_2}^{\sharp} = \sum_{k=1}^{K} c_k a(f_{n_2,k}, 0)\$ (columns of \$\hat{x}\$, without phase)
 \$t_m^{\sharp} = \sum_{k=1}^{K} c_k a(f_{m,k}, \phi_{m,k})^{T}\$ (rows of \$\hat{x}\$, with phase)

Atomic norm :

$$\|\boldsymbol{z}\|_{\mathcal{A}} = \inf_{c'_k, f'_k, \phi'_k} \left\{ \sum_k c'_k : \boldsymbol{z} = \sum_k c'_k \boldsymbol{a}(f'_k, \phi'_k) \right\}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic norms characterization

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic norms characterization

$$I_{n_2}^{\sharp} = \sum_{k=1}^{K} c_k a(f_{n_2,k}, 0)$$

 $\hookrightarrow \mathbf{T}_{M+1}(I_{n_2}^{\sharp}) \succcurlyeq 0 + \text{ of rank } K \text{ (Carathéodory, 1907)} \\ \hookrightarrow \|I_{n_2}^{\sharp}\|_{\mathcal{A}} = \sum_{k=1}^{K} c_k = \mathbf{\hat{x}}^{\sharp}[0, n_2] = c^{\star}$

$$t_m^{\sharp} = \sum_{k=1}^{K} c_k a(f_{m,k}, \phi_{m,k})^{\mathsf{T}} \quad \text{(Polisano et al., 2016)} \\ \| \boldsymbol{t}_m^{\sharp} \|_{\mathcal{A}} = \min_{\boldsymbol{q} \in \mathbb{C}^N} \left\{ q_0 : \underbrace{\begin{pmatrix} \mathsf{T}_N(\boldsymbol{q}) & \boldsymbol{t}_m^{\sharp} \\ \boldsymbol{t}_m^{\sharp *} & q_0 \end{pmatrix}}_{\mathsf{T}'_N(\boldsymbol{t}_m^{\sharp}, \boldsymbol{q})} \succeq 0 \right\} \equiv \text{SDP}(\boldsymbol{t}_m^{\sharp}) ,$$

 $\hookrightarrow \| oldsymbol{t}_m^{\sharp} \|_{\mathcal{A}} = \mathsf{SDP}(oldsymbol{t}_m^{\sharp}) = oldsymbol{q}_m[0] \leqslant c^{\star}$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Atomic norms characterization

$$\mathbf{\hat{x}}^{\sharp}[m,n_2] = \sum_{k=1}^{K} c_k \mathrm{e}^{\mathrm{j}2\pi \left(\frac{\tan\theta_k}{W}n_2 + \frac{\eta_k}{W}\right)m}, \quad c^{\star} = \sum_{k=1}^{K} c_k$$

Convex regularization of the K lines by the atomic norm

$$\begin{array}{l} \bullet \quad \|\boldsymbol{I}_{n_2}^{\sharp}\|_{\mathcal{A}} = c^{\star} = \hat{\boldsymbol{x}}^{\sharp}[0, n_2] \text{ and } \boldsymbol{\mathsf{T}}_{M+1}(\boldsymbol{I}_{n_2}^{\sharp}) \succcurlyeq 0 \\ \bullet \quad \|\boldsymbol{t}_m^{\sharp}\|_{\mathcal{A}} = \mathsf{SDP}(\boldsymbol{t}_m^{\sharp}) = \boldsymbol{q}_m[0] \leqslant c^{\star}, \ \boldsymbol{\mathsf{T}}_{H_S}'(\boldsymbol{t}_m^{\sharp}, \boldsymbol{q}_m) \succcurlyeq 0 \end{array}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Convex optimization problem

Proposition (Convex minimization)

$$\begin{split} \mathbf{\tilde{x}} &\in \underset{\mathbf{\hat{x}},\mathbf{q}\in\mathcal{X}\times\mathcal{Q}}{\arg\min}\frac{1}{2}\|\mathbf{A}\mathbf{\hat{x}}-\mathbf{\hat{y}}\|^2 \ ,\\ \text{under constraints} \quad \begin{cases} \forall n_2=0,...,H_S-1, \ \forall m=1,...,M \ ,\\ \mathbf{\hat{x}}[0,n_2]=\mathbf{\hat{x}}[0,0]\leqslant c \ ,\\ \mathbf{q}[m,0]\leqslant c \ ,\\ \mathbf{T}'_{H_S}(\mathbf{\hat{x}}[m,:],\mathbf{q}[m,:])\succcurlyeq 0 \ ,\\ \mathbf{T}_{M+1}(\mathbf{\hat{x}}[:,n_2])\succcurlyeq 0 \ . \end{cases} \end{split}$$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Convex optimization problem

Proposition (Convex minimization)

$$\begin{split} \mathbf{\tilde{x}} &\in \argmin_{\mathbf{\hat{x}},\mathbf{q}\in\mathcal{X}\times\mathcal{Q}} \frac{1}{2} \|\mathbf{A}\mathbf{\hat{x}} - \mathbf{\hat{y}}\|^2 ,\\ \text{der constraints} & \begin{cases} \forall n_2 = 0, ..., H_S - 1, \ \forall m = 1, ..., M ,\\ \mathbf{\hat{x}}[0, n_2] = \mathbf{\hat{x}}[0, 0] \leqslant c ,\\ \mathbf{q}[m, 0] \leqslant c ,\\ \mathbf{T}'_{H_S}(\mathbf{\hat{x}}[m, :], \mathbf{q}[m, :]) \succcurlyeq 0 ,\\ \mathbf{T}_{M+1}(\mathbf{\hat{x}}[:, n_2]) \succcurlyeq 0 . \end{cases} \end{split}$$

un

$$\tilde{\mathbf{X}} = \underset{\mathbf{X}\in\mathcal{H}}{\arg\min} \left\{ F(\mathbf{X}) + G(\mathbf{X}) + \sum_{i=0}^{Q-1} H_i(\mathcal{L}_i(\mathbf{X})) \right\}$$

Kévin Polisano

1

Seminar AMA group

∩ 1

`

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Convex optimization problem

Proposition (Convex minimization)

$$\begin{split} \mathbf{\tilde{x}} &\in \underset{\mathbf{\hat{x}},\mathbf{q}\in\mathcal{X}\times\mathcal{Q}}{\arg\min}\frac{1}{2}\|\mathbf{A}\mathbf{\hat{x}}-\mathbf{\hat{y}}\|^{2} ,\\ & \text{ where constraints } \begin{cases} \forall n_{2}=0,...,H_{5}-1, \ \forall m=1,...,M ,\\ \mathbf{\hat{x}}[0,n_{2}]=\mathbf{\hat{x}}[0,0]\leqslant c ,\\ \mathbf{q}[m,0]\leqslant c ,\\ \mathbf{T}'_{H_{5}}(\mathbf{\hat{x}}[m,:],\mathbf{q}[m,:])\succcurlyeq 0 ,\\ \mathbf{T}_{M+1}(\mathbf{\hat{x}}[:,n_{2}])\succcurlyeq 0 . \end{cases} \end{split}$$

$$\tilde{\mathbf{X}} = \underset{\mathbf{X}\in\mathcal{H}}{\operatorname{arg\,min}} \left\{ F(\mathbf{X}) + G(\mathbf{X}) + \sum_{i=0}^{Q-1} H_i(\mathcal{L}_i(\mathbf{X})) \right\}$$

Kévin Polisano

1

Seminar AMA group

∩ 1

`

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Convex optimization problem

Proposition (Convex minimization)

$$\begin{split} \mathbf{\tilde{x}} &\in \underset{\mathbf{\hat{x}},\mathbf{q}\in\mathcal{X}\times\mathcal{Q}}{\arg\min}\frac{1}{2}\|\mathbf{A}\mathbf{\hat{x}}-\mathbf{\hat{y}}\|^{2},\\ &\text{where constraints} \quad \begin{cases} \forall n_{2}=0,...,H_{5}-1, \ \forall m=1,...,M,\\ \mathbf{\hat{x}}[0,n_{2}]=\mathbf{\hat{x}}[0,0]\leqslant c,\\ \mathbf{q}[m,0]\leqslant c,\\ \mathbf{T}'_{H_{5}}(\mathbf{\hat{x}}[m,:],\mathbf{q}[m,:])\succcurlyeq 0,\\ \mathbf{T}_{M+1}(\mathbf{\hat{x}}[:,n_{2}])\succcurlyeq 0. \end{cases} \end{split}$$

$$\tilde{\mathbf{X}} = \underset{\mathbf{X}\in\mathcal{H}}{\operatorname{arg\,min}} \left\{ F(\mathbf{X}) + G(\mathbf{X}) + \sum_{i=0}^{Q-1} H_i(\mathcal{L}_i(\mathbf{X})) \right\}$$

Kévin Polisano

1

Seminar AMA group

∩ 1

`

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Convex optimization problem

Proposition (Convex minimization)

$$\begin{split} \mathbf{\tilde{x}} &\in \underset{\mathbf{\hat{x}},\mathbf{q}\in\mathcal{X}\times\mathcal{Q}}{\arg\min}\frac{1}{2}\|\mathbf{A}\mathbf{\hat{x}}-\mathbf{\hat{y}}\|^{2},\\ \text{defined on the set of the set$$

(Chambolle and Pock, 2010)

ur

$$\tilde{\mathbf{X}} = \operatorname*{arg\,min}_{\mathbf{X}\in\mathcal{H}} \left\{ F(\mathbf{X}) + G(\mathbf{X}) + \sum_{i=0}^{\infty-1} H_i(\mathrm{L}_i(\mathbf{X})) \right\}$$

Kévin Polisano

1

Seminar AMA group

0 1

١

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

Denoising and deconvolution

Exp. 1

Détection

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

Denoising and deconvolution

Exp. 1 Exp. 2

Détection

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

• Denoising and deconvolution

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

Denoising and deconvolution

Table: Relative errors of the line parameters estimation

	Expérience 1	Expérience 2	Expérience 3
Δ_{θ}/θ	(10 ⁻⁷ , 3.10 ⁻⁶ , 7.10 ⁻⁷)	$(10^{-2}, 6.10^{-2}, 9.10^{-2})$	$(6.10^{-7}, 9.10^{-5}, 8.10^{-6})$
Δ_{α}/α	$(10^{-7}, 10^{-7}, 10^{-7})$	$(10^{-2}, 9.10^{-2}, 2.10^{-1})$	$(4.10^{-5}, 2.10^{-5}, 2.10^{-5})$
Δ_{η}	$(4.10^{-6}, 7.10^{-6}, 7.10^{-6})$	$(5.10^{-2}, 4.10^{-2}, 3.10^{-2})$	$(5.10^{-5}, 10^{-4}, 3.10^{-4})$

34/37

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{{\rm{A}}}} \right)$

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

Convex minimization and numerical experiments

Numerical experiments

Closed lines

Multiple lines

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

• Spatial inpainting

Principle of super-resolution Modeling blurred lines and the inverse problem Convex minimization and numerical experiments

Numerical experiments

Inpainting with big mask

Masquage

Inpainting

Masquage Inpainting

Inpainting with random mask

Kévin Polisano

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{{\rm{A}}}} \right)$

Outline

Motivations

Modeling and analysis of local anisotropic textures

- From Brownian motion to random anisotropic fields
- The GAFBF model : localized H-sssi fields
- Wavelet-based definition of the notion of orientation for random fields

A convex approach for the super-resolution of 2-D lines

- Principle of super-resolution
- Modeling blurred lines and formulation of the inverse problem
- Resolution of the optimization problem and numerical experiments

Modeling and analysis of local anisotropic textures A convex approach for the super-resolution of 2-D lines $% \left({{{\rm{A}}_{{\rm{A}}}} \right)$

Take home message

- Two new models of anisotropic Gaussian fields producing textures with prescribed local orientation and regularity
- Efficient methods for the simulation of these models
- A local orientation notion for a large class of random fields
- Characterization of the statistic estimators for the orientation and directionality parameters
- New method for the super-resolution of 2-D lines
- Penalize in both directions can lead to the exact solution
- Toward the super-resolution of 2-D curves ?

The tangent field: a tool for analysis and synthesis

A tool for analysis (Lévy-Vehel, 1995), (Falconer, 2002) :

4

$$\left\{\lim_{\rho\to 0}\frac{X(\mathbf{x_0}+\rho\mathbf{x})-X(\mathbf{x_0})}{\rho^{h(\mathbf{x_0})}}\right\}_{\mathbf{x}\in\mathbb{R}^2} \stackrel{d}{=} \left\{Y_{\mathbf{x_0}}(\mathbf{x})\right\}_{\mathbf{x}\in\mathbb{R}^2}$$

A tool for synthesis (Lévy-Véhel, 1995), (Benassi, 1997) :

$$X(\mathbf{x}_0) \leftarrow Y_{\mathbf{x}_0}(\mathbf{x} = \mathbf{x}_0)$$

Multifractional Brownian field B^h (MBF) (Peltier, Vehel, 1995)

• Analysis : the MBF behaves locally as a FBF $\left\{\lim_{\rho \to 0} \frac{B^{h}(\mathbf{x}_{0} + \rho \mathbf{x}) - B^{h}(\mathbf{x}_{0})}{\rho^{h(\mathbf{x}_{0})}}\right\}_{\mathbf{x} \in \mathbb{R}^{2}} \stackrel{d}{=} \left\{B^{h(\mathbf{x}_{0})}(\mathbf{x})\right\}_{\mathbf{x} \in \mathbb{R}^{2}}$ • Synthesis : $B^{h}(\mathbf{x}_{0}) \leftarrow B^{h(\mathbf{x}_{0})}(\mathbf{x} = \mathbf{x}_{0})$

The tangent field: a tool for analysis and synthesis

A tool for analysis (Lévy-Vehel, 1995), (Falconer, 2002) :

$$\left\{\lim_{
ho o 0} rac{X(oldsymbol{x_0} +
ho oldsymbol{x}) - X(oldsymbol{x_0})}{
ho^{h(oldsymbol{x_0})}}
ight\}_{oldsymbol{x} \in \mathbb{R}^2} \stackrel{d}{=} \left\{Y_{oldsymbol{x_0}}(oldsymbol{x})
ight\}_{oldsymbol{x} \in \mathbb{R}^2}$$

A tool for synthesis (Lévy-Véhel, 1995), (Benassi, 1997) :

$$X(\mathbf{x}_0) \leftarrow Y_{\mathbf{x}_0}(\mathbf{x} = \mathbf{x}_0)$$

FBF B^H , $H \equiv h(\mathbf{x}_1)$ MBF $B^h(\mathbf{x})$

FBF B^H , $H \equiv h(\mathbf{x}_2)$

Kévin Polisano

The tangent field: a tool for analysis and synthesis

A tool for analysis (Lévy-Vehel, 1995), (Falconer, 2002) :

$$\left\{\lim_{\rho \to 0} \frac{X(\boldsymbol{x_0} + \rho \boldsymbol{x}) - X(\boldsymbol{x_0})}{\rho^{h(\boldsymbol{x_0})}}\right\}_{\boldsymbol{x} \in \mathbb{R}^2} \stackrel{d}{=} \left\{Y_{\boldsymbol{x_0}}(\boldsymbol{x})\right\}_{\boldsymbol{x} \in \mathbb{R}^2}$$

A tool for synthesis (Lévy-Véhel, 1995), (Benassi, 1997) :

$$X(\mathbf{x}_0) \leftarrow Y_{\mathbf{x}_0}(\mathbf{x} = \mathbf{x}_0)$$

Synthesis of the GAFBF by its tangent fields

$$X(\mathbf{x}_0) \leftarrow Y_{\mathbf{x}_0}(\mathbf{x} = \mathbf{x}_0) = \int_{\mathbb{R}^2} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x}, \boldsymbol{\xi} \rangle} - 1) \frac{C_{\mathbf{x}_0}(\boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^{h(\mathbf{x}_0)+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

 \Rightarrow requires to simulate as many tangent fields there are pixels in the image !

Kévin Polisano

Synthesis of a H-sssi by turning bands

$$Y_{\mathbf{x}_0}^{[n]}(\mathbf{x}) = \sum_{i=1}^n \omega_i(\mathbf{x}_0) \mathbf{B}_i^H(\langle \mathbf{x}, \mathbf{\Theta}_i \rangle) ,$$
$$\omega_i(\mathbf{x}_0)^2 = \lambda_i \gamma(h(\mathbf{x}_0)) \mathbf{C}_{\mathbf{x}_0}(\mathbf{\Theta}_i)$$

Synthesis of GAFBF inspired from (Wood, 1994)

• Simulate U GAFBF X^{H_u} with constant regularities $(H_u)_{1 \le u \le U}$:

$$X^{H_{u}}(\mathbf{x}_{0}) \leftarrow Y_{\mathbf{x}_{0}}(\mathbf{x}=\mathbf{x}_{0}) = \int_{\mathbb{R}^{2}} (\mathrm{e}^{\mathrm{j}\langle \mathbf{x}, \boldsymbol{\xi}
angle} - 1) rac{C_{\mathbf{x}_{0}}(\boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^{H_{u}+1}} \widehat{\mathbf{W}}(\mathrm{d}\boldsymbol{\xi})$$

Synthesis of GAFBF inspired from (Wood, 1994)

Simulate the GAFBF with variable regularity by krigeage : Spatial interpolation of the (X^{H_u}) from the covariance

Synthesis of H-sssi fields by turning bands

$$Y_{\mathbf{x}_{0}}^{[n]}(\mathbf{x}) = \sum_{i=1}^{n} \omega_{i}(\mathbf{x}_{0}) \mathbf{B}_{i}^{H}(\langle \mathbf{x}, \mathbf{\Theta}_{i} \rangle) ,$$

$$\Rightarrow \text{Simulate } n \text{ FBM } \mathbf{B}_{i}^{H} \text{ of complexity } O(\ell \log \ell)$$

Simulation of the LAFBF with H constant

$$egin{aligned} B^{H}_{lpha,\delta}(m{x}_0) &\leftarrow Y^{[n]}_{m{x}_0}(m{x}=m{x}_0) = \sum_{i=1}^n \omega_i(m{x}_0) m{B}^{H}_i\left(\langlem{x}_0,\,m{\Theta}_i
angle
ight) \ , \ \omega_i(m{x}_0)^2 &\propto m{C}_{m{x}_0}(m{\Theta}_i) = \mathbbm{1}_{[-\delta(m{x}_0),\delta(m{x}_0)]}(rgm{\Theta}_i - lpha(m{x}_0)) \end{aligned}$$

Simulation of the LAFBF with H constant

$$B^{H}_{\alpha,\delta}(\mathbf{x}_0) \leftarrow Y^{[n]}_{\mathbf{x}_0}(\mathbf{x}=\mathbf{x}_0) = \sum_{i=1}^n \omega_i(\mathbf{x}_0) B^{H}_i(\langle \mathbf{x}_0, \, \Theta_i \rangle) \,\,,$$

- Pre-computing of the $n B_i^H$ (complexity $O(\ell \log \ell)$)
- The rest of the algorithm is of complexity $O(\log n \# \text{pixels})$

Simulation of the LAFBF with H constant

$$B_{\alpha,\delta}^{H} \leftarrow Y_{\mathbf{x}_{0}}^{[n]}(\mathbf{x} = \mathbf{x}_{0}) = \sum_{i=1}^{n} \omega_{i}(\mathbf{x}_{0}) B_{i}^{H}(\langle \mathbf{x}_{0}, \Theta_{i} \rangle) ,$$

$$\omega_{i}(\mathbf{x}_{0})^{2} \propto C_{\mathbf{x}_{0}}(\Theta_{i}) = \mathbb{1}_{[-\delta(\mathbf{x}_{0}),\delta(\mathbf{x}_{0})]}(\arg \Theta_{i} - \alpha(\mathbf{x}_{0}))$$

 $C_{\mathbf{x}_0}(\mathbf{\Theta}_i)$

 $\widetilde{C}_{\mathbf{x}_0}(\mathbf{\Theta}_i)$ régularisée

Kévin Polisano

Seminar AMA group

Simulation of the LAFBF with *h* variable (krigeage)

$$\widehat{Z}(s_0) = \sum_{i \in \mathcal{V}(s_0)} \lambda_i Z(s_i) = \lambda^{\mathsf{T}} Z$$
 (BLUE)

 $Z = B^{h}_{\alpha,\delta}, \ (B^{H_{u}}_{\alpha,\delta})_{1 \leq u \leq U} \to Z(s_{i}), \ \boldsymbol{\Sigma}_{ij} = \operatorname{Cov}(Z(s_{i}), Z(s_{j})) \to \boldsymbol{\lambda}$

Local orientation of a deterministic function

Gradient operator

The gradient operator $\nabla : f \mapsto (\partial_{x_1} f, \partial_{x_2} f)$, with the notation $\partial_{x_1} f : \mathbf{x} = (x_1, x_2) \mapsto \frac{\partial f}{\partial x_1}(\mathbf{x})$, is defined in Fourier domain by:

$$\widehat{\partial_{\mathsf{x}_1} f}(\omega) = -\mathrm{j}\omega_1 \widehat{f}(\omega), \quad \widehat{\partial_{\mathsf{x}_2} f}(\omega) = -\mathrm{j}\omega_2 \widehat{f}(\omega)$$

$$\Rightarrow \text{Orientation} : \mathbf{n}(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}, \ \theta(\mathbf{x}) = \arctan\left(\frac{\partial_{x_2} f(\mathbf{x})}{\partial_{x_1} f(\mathbf{x})}\right)$$
$$\Rightarrow (\text{More robust}) \text{ minimize the directions against } \nabla f :$$

$$\max_{\theta'} \int_{\mathbb{R}^2} w(\mathbf{x} - \mathbf{x}') \langle \mathbf{n}(\theta'), \nabla f(\mathbf{x}') \rangle^2 d\mathbf{x}' = \max_{\theta'} \mathbf{n}(\theta')^{\mathsf{T}} \mathbf{J}_f^W(\mathbf{x}) \mathbf{n}(\theta')$$
$$[\mathbf{J}_f^W(\mathbf{x})]_{pq} = \int_{\mathbb{R}^2} w(\mathbf{x} - \mathbf{x}') \partial_{\mathbf{x}_p} f(\mathbf{x}') \partial_{\mathbf{x}_q} f(\mathbf{x}') d\mathbf{x}', \quad p, q \in \{1, 2\}$$

Local orientation of a deterministic function

Riesz transform and monogenic signal (Felsberg, 2001)

The Riesz operator \mathcal{R} : $f \mapsto (\mathcal{R}_1 f, \mathcal{R}_2 f)$ is defined by:

$$\widehat{\mathcal{R}_1 f}(\omega) = -\mathrm{j} rac{\omega_1}{\|\omega\|} \widehat{f}(\omega), \quad \widehat{\mathcal{R}_2 f}(\omega) = -\mathrm{j} rac{\omega_2}{\|\omega\|} \widehat{f}(\omega)$$

 $\Rightarrow \text{Orientation} : \mathbf{n}(\mathbf{x}) = \frac{\mathcal{R}f(\mathbf{x})}{\|\mathcal{R}f(\mathbf{x})\|}, \ \theta(\mathbf{x}) = \arctan\left(\frac{\mathcal{R}_2f(\mathbf{x})}{\mathcal{R}_1f(\mathbf{x})}\right)$ $\Rightarrow (\text{More robust}) \text{ minimize the directions against } \mathcal{R}f :$

$$\max_{\theta'} \int_{\mathbb{R}^2} w(\boldsymbol{x}-\boldsymbol{x}') \left\langle \boldsymbol{n}(\theta'), \, \boldsymbol{\mathcal{R}}f(\boldsymbol{x}') \right\rangle^2 \mathrm{d}\boldsymbol{x}' = \max_{\theta'} \boldsymbol{n}(\theta')^{\mathsf{T}} \mathsf{J}_f^W(\boldsymbol{x}) \boldsymbol{n}(\theta')$$

$$[\mathbf{J}_{f}^{W}(\mathbf{x})]_{pq} = \int_{\mathbb{R}^{2}} w(\mathbf{x}-\mathbf{x}') \mathcal{R}_{p} f(\mathbf{x}') \mathcal{R}_{q} f(\mathbf{x}') \, \mathrm{d}\mathbf{x}', \quad p,q \in \{1,2\}$$

Local orientation of a deterministic function

Monogenic wavelet coefficients (Unser, Olhede, 2009)

Let $\psi_{i,\mathbf{k}}(\mathbf{x}) = 2^{i}\psi(2^{i}\mathbf{x} - \mathbf{k})$ be a wavelet frame constructed from a real isotropic wavelet $\widehat{\psi}(\boldsymbol{\xi}) = \varphi(||\boldsymbol{\xi}||)$. We consider the wavelet coefficients of $\mathcal{R}f$ in the frame $\{\psi_{i,\mathbf{k}}\}$:

$$c_{i,\boldsymbol{k}}^{(\mathcal{R})}(f) = \begin{pmatrix} c_{i,\boldsymbol{k}}^{(1)}(f) \\ c_{i,\boldsymbol{k}}^{(2)}(f) \end{pmatrix} = \begin{pmatrix} \langle \mathcal{R}_1 f, \psi_{i,\boldsymbol{k}} \rangle \\ \langle \mathcal{R}_2 f, \psi_{i,\boldsymbol{k}} \rangle \end{pmatrix} = \begin{pmatrix} \langle f, \mathcal{R}_1 \psi_{i,\boldsymbol{k}} \rangle \\ \langle f, \mathcal{R}_2 \psi_{i,\boldsymbol{k}} \rangle \end{pmatrix}$$

Tensor structure of the wavelet coefficients :

$$\mathsf{J}^{W}_{f,i}[k] = c^{(\mathcal{R})}_{i,k}(f)c^{(\mathcal{R})}_{i,k}(f)^{*} = \begin{pmatrix} |c^{(1)}_{i,k}(f)|^{2} & c^{(1)}_{i,k}(f) \cdot \overline{c^{(2)}_{i,k}(f)} \\ \overline{c^{(1)}_{i,k}(f) \cdot c^{(2)}_{i,k}(f)} & |c^{(1)}_{i,k}(f)|^{2} \end{pmatrix}$$

The WAFBF : warped H-sssi fields

Definition (WAFBF)

Let X be a H-sssi field and $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable function. The Warped Anisotropic Fractional Brownian Field (WAFBF) $Z_{\Phi,X}$ is defined as the deformation of the elementary field X by the application Φ :

$$Z_{\mathbf{\Phi},X}(\mathbf{x}) = X(\mathbf{\Phi}(\mathbf{x}))$$
.

References about deformations of stationary random fields:

- Perrin and Senoussi, 1999, 2000)
- (Guyon and Perrin, 2000)

46/37

The WAFBF : warped H-sssi fields

Definition (WAFBF)

Let X be a H-sssi field and $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable function. The WAFBF $Z_{\Phi,X}$ is defined as the deformation of the elementary field X by the application Φ :

$$Z_{\Phi,X}(\mathbf{x}) = X(\Phi(\mathbf{x}))$$
.

Theorem (Tangent field of the WAFBF)

 $Z_{oldsymbol{\Phi},X}$ admits at every point $x_{oldsymbol{0}} \in \mathbb{R}^2$ the tangent field:

$$Y_{oldsymbol{x_0}}(oldsymbol{x}) = X(oldsymbol{\mathsf{D}} oldsymbol{\Phi}(oldsymbol{x_0}) \,\,oldsymbol{x}) \,, \quad orall oldsymbol{x} \in \mathbb{R}^2 \,,$$

where $D\Phi(x_0)$ is the jacobian matrix of Φ at point x_0 .

WAFBF with prescribed local orientations

$$C(\boldsymbol{\xi}) = \mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi}) \qquad \text{WAFBF } (a, b) = (2, -1)$$

$$\underbrace{\boldsymbol{\Phi}_{\alpha}}_{\alpha(x_1, x_2) = ax_1 + bx_2 + c} \qquad \underbrace{\boldsymbol{\Phi}_{\alpha}}_{Z = X_{0,\delta} \circ \boldsymbol{\Phi}_{\alpha}}$$

$$\Phi_{\alpha}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{\exp(a\mathbf{x}_{2} - b\mathbf{x}_{1})}{a^{2} + b^{2}} \begin{pmatrix} a\sin(a\mathbf{x}_{1} + b\mathbf{x}_{2} + c) - b\cos(a\mathbf{x}_{1} + b\mathbf{x}_{2} + c) \\ a\cos(a\mathbf{x}_{1} + b\mathbf{x}_{2} + c) + b\sin(a\mathbf{x}_{1} + b\mathbf{x}_{2} + c) \end{pmatrix}$$
$$\vec{n}_{Z}(\mathbf{x}) = \frac{\mathbf{D}\Phi(\mathbf{x})^{\mathsf{T}}(1, 0)}{\|\mathbf{D}\Phi(\mathbf{x})^{\mathsf{T}}(1, 0)\|} = (\cos\alpha(\mathbf{x}), \sin\alpha(\mathbf{x}))$$

$$C(\boldsymbol{\xi}) = \mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi}) \qquad \text{WAFBF}$$

$$\Phi(x)$$

$$R_{-\alpha(x)}x$$

$$Z = X \circ \Phi$$

$$\alpha(x_1, x_2) = -\frac{\pi}{4}$$

$$C(\boldsymbol{\xi}) = \mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi}) \qquad \text{WAFBF}$$

$$\Phi(\boldsymbol{x})$$

$$R_{-\alpha(\boldsymbol{x})}\boldsymbol{x}$$

$$Z = X \circ \Phi$$

$$\alpha(\mathbf{x}_1,\mathbf{x}_2)=-\frac{\pi}{2}+\mathbf{x}_1$$

$$C(\boldsymbol{\xi}) = \mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi}) \qquad \text{WAFBF}$$

$$\Phi(\boldsymbol{x})$$

$$R_{-\alpha(\boldsymbol{x})}\boldsymbol{x}$$

$$Z = X \circ \Phi$$

$$\alpha(\mathbf{x}_1,\mathbf{x}_2)=-\frac{\pi}{2}+\mathbf{x}_2$$

$$C(\boldsymbol{\xi}) = \mathbb{1}_{[-\delta,\delta]}(\arg \boldsymbol{\xi}) \qquad \text{WAFBF}$$

$$\Phi(x)$$

$$R_{-\alpha(x)}x$$

$$Z = X \circ \Phi$$

$$\alpha(x_1, x_2) = -\frac{\pi}{2} + x_1^2 - x_2$$

The directionnality is not controlled

- The directionnality is not controlled
- **2** Which transformation Φ enables to prescribe the orientation at each point $\alpha(\mathbf{x})$?

Kévin Polisano Seminar AMA group

- The directionnality is not controlled
- **2** Which transformation Φ enables to prescribe the orientation at each point $\alpha(\mathbf{x})$?
- Which definition for the orientation of a random field ?

Orientation of a localizable Gaussian field

Local orientation of the WAFBF where $X = X_{\alpha_0,\delta}$ is an EF

The tangent field of $Z_{\Phi,X}(x) = X_{\alpha_0,\delta}(\Phi(x))$ at x_0 is

$$Y_{oldsymbol{x_0}}(oldsymbol{x}) = X_{lpha_0,\delta}(oldsymbol{\mathsf{D}}oldsymbol{\Phi}(oldsymbol{x_0}) |oldsymbol{x}), \quad orall oldsymbol{x} \in \mathbb{R}^2$$

whose orientation is $\vec{n}_{Y_{x_0}} = \frac{\mathbf{L}^T u(\alpha_0)}{\|\mathbf{L}^T u(\alpha_0)\|}$ with $\mathbf{L} = \mathbf{D} \Phi(x_0)$, hence

$$\vec{n}_Z(x_0) \equiv \vec{n}_{Y_{x_0}} = \frac{\mathsf{D} \Phi(x_0)^{\mathsf{T}} u(\alpha_0)}{\|\mathsf{D} \Phi(x_0)^{\mathsf{T}} u(\alpha_0)\|}$$

Orientation of a localizable Gaussian field

Exemple (Rotation locale du WAFBF où $X = X_{0,\delta}$)

The local orientation of $Z_{\Phi,X}(x) = X_{0,\delta}(\Phi(x))$ at x_0 with $\Phi(x) = \mathbf{R}_{-\alpha(x)}x$ is given by $\vec{n}_Z(x_0) = \frac{D\Phi(x_0)^{\mathsf{T}}e_1}{\|D\Phi(x_0)^{\mathsf{T}}e_1\|}$, that is :

$$\vec{n}_{Z}(\mathbf{x_{0}}) = \frac{\boldsymbol{u}(\alpha(\mathbf{x_{0}})) + \langle \boldsymbol{u}(\alpha(\mathbf{x_{0}}))^{\perp}, \mathbf{x_{0}} \rangle \nabla \alpha(\mathbf{x_{0}})}{\|\boldsymbol{u}(\alpha(\mathbf{x_{0}})) + \langle \boldsymbol{u}(\alpha(\mathbf{x_{0}}))^{\perp}, \mathbf{x_{0}} \rangle \nabla \alpha(\mathbf{x_{0}})\|}$$

Kévin Polisano

Seminar AMA group

Prescribed orientations for the WAFBF

Proposition (Orientation control by harmonic functions)

Let $Z_{\Phi_{\alpha},X}(\mathbf{x})$ be the field $X = X_{0,\delta}$ with orientation $\mathbf{e}_1 = (1,0)^{\mathsf{T}}$ warped by a conform transformation Φ_{α} defined by :

9
$$\alpha : \mathbb{R}^2 \to \mathbb{R}$$
 a harmonic function,

• λ its conjugate harmonic function such as $\Psi_{\alpha} = \begin{pmatrix} \lambda \\ -\alpha \end{pmatrix}$ is holomorphic,

(a) Φ_{α} a complex primitive of $\exp(\Psi_{\alpha})$. The local orientation (up to δ^2) of $Z_{\Phi_{\alpha},X}$ at x_0 is

$$\vec{n}_Z(x_0) = \begin{pmatrix} \cos \alpha(x_0) \\ \sin \alpha(x_0) \end{pmatrix} = u(\alpha(x_0))$$

Paradigm of the atomic decomposition

$$\mathbf{x} = \sum_{i=1}^{K} c_i \mathbf{a}_i, \quad c_i \ge 0, \quad \mathbf{a}_i \in \mathcal{A}$$

Atomic norm

$$\|\mathbf{x}\|_{\mathcal{A}} = \inf \{t > 0 : \mathbf{x} \in t \operatorname{conv}(\mathcal{A})\}$$
$$= \inf \left\{ \sum_{\mathbf{a} \in \mathcal{A}} c_{\mathbf{a}} : \mathbf{x} = \sum_{\mathbf{a} \in \mathcal{A}} c_{\mathbf{a}} \mathbf{a} \right\}$$

 $\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}$

 $\|\mathbf{x}\|_{\mathcal{A}} = \|\mathbf{x}\|_{1}$

(Chandrasekaran et al., 2010)

Kévin Polisano

Seminar AMA group

Signals separation

Objective : Extract frequencies and amplitudes of sinusoids.

 \Rightarrow spectral method estimation (Prony, ESPRIT, MUSIC, ...)

Seminar AMA group

Prony method

$$\mathbf{x}_{m} = \sum_{k=1}^{K} \rho_{k} \underbrace{\left(\mathbf{e}^{-j\omega_{k}}\right)}_{\mathbf{z}_{k}}^{m}, \quad \rho_{k} \in \mathbb{C}, \ \omega_{k} \in [-\pi, \pi], \ m = -M, \dots, M$$

Annihilating filter :
$$H(z) = \prod_{k=1}^{K} (z - \overline{z_k}) = \sum_{k=0}^{K} h_k z^k$$

$$\sum_{j=0}^{K} h_j \mathbf{x}_{m-j} = \sum_{j=0}^{K} h_j \left(\sum_{k=1}^{K} \rho_k z_k^{m-j} \right) = \sum_{k=1}^{K} \rho_k z_k^m \underbrace{\left(\sum_{j=0}^{K} h_j z_k^{-j} \right)}_{H(\overline{z_k}) = 0} = 0$$

Prony method : annihilating polynomial

$$\mathbf{x}_{m} = \sum_{k=1}^{K} \rho_{k} \underbrace{\left(\mathbf{e}^{-j\omega_{k}}\right)}_{\mathbf{z}_{k}}^{m}, \quad \rho_{k} \in \mathbb{C}, \ \omega_{k} \in [-\pi, \pi], \ m = -M, \dots, M$$

Annihilating filter :
$$H(z) = \prod_{k=1}^{K} (z - \overline{z_k}) = \sum_{k=0}^{K} h_k z^k$$

• $\sum_{j=0}^{K} h_j x_{m-j} = 0, \forall m = -M + K, \dots, M \Leftrightarrow \mathbf{x} * \mathbf{h} = \mathbf{0}$
• $\begin{pmatrix} x_{-M+K} & \cdots & x_{-M} \\ \vdots & \ddots & \vdots \\ x_M & \cdots & x_{M-K} \end{pmatrix} \begin{pmatrix} h_0 \\ \vdots \\ h_K \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Leftrightarrow \mathbf{T}_K \mathbf{h} = \mathbf{0}$

Kévin Polisano

Seminar AMA group

I G

Prony method : frequencies estimation

$$\mathbf{x}_{m} = \sum_{k=1}^{K} \rho_{k} \underbrace{\left(\mathbf{e}^{-j\omega_{k}}\right)}_{\mathbf{z}_{k}}^{m}, \quad \rho_{k} \in \mathbb{C}, \ \omega_{k} \in [-\pi, \pi], \ m = -M, \dots, M$$

Annihilating filter:
$$H(z) = \prod_{k=1}^{K} (z - \overline{z_k}) = \sum_{k=0}^{K} h_k z^k$$

• $h = \text{sing. vec. for } \lambda = 0 \text{ of}$
 $\mathbf{T}_{K} = \begin{pmatrix} x_{-M+K} & \cdots & x_{-M} \\ \vdots & \ddots & \vdots \\ x_{M} & \cdots & x_{M-K} \end{pmatrix}$
• $\overline{z_k} = \text{roots of the polynomial } H(z), \text{ puis } \omega_k = \arg(\overline{z_k})$

Prony method : amplitudes estimation

•
$$\mathbf{x}_{m} = \sum_{k=1}^{K} \rho_{k} \left(e^{-j\omega_{k}} \right)^{m}, \forall m = -M, \dots, M$$

• $\begin{pmatrix} e^{jM\omega_{1}} & \cdots & e^{jM\omega_{K}} \\ \vdots & \ddots & \vdots \\ e^{-jM\omega_{1}} & \cdots & e^{-jM\omega_{K}} \end{pmatrix} \begin{pmatrix} \rho_{1} \\ \vdots \\ \rho_{K} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{-M} \\ \vdots \\ \mathbf{x}_{M} \end{pmatrix} \Leftrightarrow \mathbf{U}\boldsymbol{\rho} = \mathbf{x}$

Least-square method :

$$\mathbf{U}^{\mathrm{H}}\mathbf{U}\boldsymbol{
ho} = \mathbf{U}^{\mathrm{H}}\mathbf{x} \Longleftrightarrow \boldsymbol{
ho} = (\mathbf{U}^{\mathrm{H}}\mathbf{U})^{-1}\mathbf{U}^{\mathrm{H}}\mathbf{x}$$

Motivations

Kévin Polisano

IG

Motivations

Kévin Polisano

up

LIG

Diverses applications

Kévin Polisano

Seminar AMA group

Perpectives

• Improvement of the methods :

- Definition of the Riesz transform a random field
- Test hypothesis for the directionality of a texture
- 2-D extraction of the line parameters
- Applications :
 - Tests of orientation on real medical images
 - Super-resolution of *patchs* on images from microscopy
- Further perspectives :
 - Treat the multiple orientations case
 - Super-resolution of 2-D curves

