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Abstract—Inferring a binary connectivity graph from resting-
state fMRI data for a single subject requires making several
methodological choices and assumptions that can significantly
affect the results. In this study, we investigate the robustness
of existing edge detection methods when relaxing a common
assumption: the sparsity of the graph. We propose a new
pipeline to generate synthetic data and to benchmark the state
of the art in graph inference. Simulated correlation matrices
are designed to have a set of given zeros and a constraint
on the signal-to-noise ratio. We compare approaches based on
covariance or precision matrices, emphasizing their implications
for connectivity inference. This framework allows us to assess the
sensitivity of connectivity estimations and edge detection methods
to different parameters.

Index Terms—graph learning, edge detection, multiple testing,
Gaussian graphical models, percolation thresholding, PSD ma-
trices generation

I. INTRODUCTION

Representing brain connectivity as a graph is highly valu-
able in neuroscience, as it allows for a structured visualization
where nodes correspond to brain regions and edges represent
interactions between them. Usually, the brain is parcelled
in regions of interest (ROIs) and we exploit fMRI data to
provide statistical insights and a clear representation of the
dependencies between these brain regions. A key challenge
lies in defining the dependencies between brain regions. Since
temporal signals are extracted from brain regions, various
estimators —such as correlations or partial correlations— can
be used to quantify these dependencies. Most methods aim
to infer the graph by identifying the zeros of the covariance
matrix or the precision matrix. Developing reliable statistical
techniques for this inference is essential for ensuring accurate
connectivity graph for further analysis. Previous methods
have been proposed to evaluate the robustness of connectivity
estimations relying essentially on a data driven approach [1],
[2], or under the assumption of sparsity [3].

The aim of this paper is to evaluate different methods for
inferring a connectivity graph between brain regions from
resting-state fMRI wavelets for a single subject by providing
a large set of simulation data. These methods are usually sep-
arated in two steps: (i) choosing an estimator of a connectivity
measures, (ii) transforming these continuous connectivity mea-
sures matrices into an adjacency matrix, where a 1 indicates
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the presence of a connection, and with 0 otherwise, defining at
the same time a connectivity graph. This binarization process,
which we refer to as edge detection methods, determines which
statistical associations should be retained as edges in the graph.
This step is often called sparsification, but we find this term
misleading as it suggests an inherently sparse graph structure,
which may not always be the case for fMRI connectivity [4].

Our study is structured around these two key steps: (i) eval-
uating the quality of different connectivity indicators and (ii)
assessing the sensitivity of edge detection methods. The first
part of our results focuses on quantifying how well different
indicators (correlation, partial correlation, and their variants)
discriminate the zeros and the ones of the ground-truth adja-
cency matrix. The second part highlights the difficulty to find a
robust threshold. Finally, we provide a comparative analysis of
several existing calibrated methods for binarizing connectivity
matrices with respect to several parameters.

II. MODEL SPECIFICATION

A. Formalization in a Probabilistic Setting

In brain connectivity we suppose that the ROIs are as-
sociated with p variables that define a random vector X =
(X1, . . . , Xp)

⊤ from which we have T i.i.d realisations that
follow a multivariate centered Gaussian distribution, with
Σ ∈ Rp×p the matrix of covariance. A matrix Σ from
Rp×p can be associated to an adjacency matrix defined by
Ai,j = 1Σi,j ̸=0. This allows us to navigate between the space
of matrices and the space of graph: a graph G is a mathematical
structure used to represent pairwise relations between objects.
Formally, a graph is defined as G = (V, E), where V is the
set of nodes, and E ⊂ V × V is the set of edges. Here we
want to obtain a connectivity graph, where the nodes are
the brain regions and the edges represent the dependencies
between them: we want the edges to exist depending on the
adjacency matrix from either the covariance matrix Σ or of the
precision matrix Σ−1. The choice of covariance or precision
matrix depends on the kind of dependencies that we want to
represent between the ROIs.

In practice we need to estimate the adjacency matrices of
either covariance or precision matrices. We usually prefer to
estimate the correlations and the partial correlations. That is
R = (ρij)i,j=1,...,p = (diag(Σ))−

1
2 Σ (diag(Σ))−

1
2 for the

correlation matrix and its inverse for the partial correlation
matrix. We can use the classic empirical estimators: Σ̂ = X⊤X

T



and naturally the estimator of the correlations defined by
R̂ = (ρ̂ij)i,j=1,...,p = (diag(Σ̂))−

1
2 Σ̂ (diag(Σ̂))−

1
2 and

its inverse for the empirical partial correlation matrix. These
estimators converge towards the correlation and partial corre-
lation matrices as T goes to infinity, however since we are
working with a number of observations that can be low, it
may be useful to consider other estimators. For instance, the
Ledoit-Wolf regularization for empirical covariance is a well-
known method that is supposed to reduce the variance of the
estimation when the matrix is sparse [5].

B. Key Parameters

For this paper, we want to evaluate the sensibility of
the previous connectivity measures and of edge detection
methods regarding several parameters identified in previous
studies: graph density, signal-to-noise ratio and sample size.
We are particularly interested in these parameters because most
methods are built on strong assumptions about them.

• Graph density (d): It is often assumed that the true
underlying graph is sparse, with the proportion of edges
in the adjacency matrix d at most d = 0.05 [6]. We believe
that this assumption may be unrealistic for fMRI data [4].

• Signal-to-noise level (b): Some methods incorporate prior
assumptions or tune their parameters based on an expected
contrast between zero and nonzero values in the connec-
tivity matrix. They implicitly assume that when an edge
is present, its value should be sufficiently distinct from
zero. We propose to define the mean value of the nonzero
coefficients in the correlation or precision matrix, denoted
b, as a parameter to control in the simulation of data. This
parameter behaves like a signal-to-noise ratio in our study.

• Sample size (T ): Some methods are theoretically guaran-
teed to converge to the true adjacency matrix as the number
of observations T increases. In practice, fMRI data are
limited samples. We focus on evaluating the performance
of the methods when T ≈ 100, which is a realistic order
of magnitude for fMRI wavelet coefficients [7].

C. Synthetic Data Generation

The difficulty in simulating data for this paper relies on
the ability to control the parameter b and d for a positive-
definite (PSD) matrix. Using chordal graphs, we are able to
simulate graphs (V, E) respecting any given proportion of
edges d meaning: d = |E|

p(p−1)/2 . For each of these graphs,
we want to find a positive-definite matrix respecting its set
of edges E , but we also want to control the mean value
of its nonzero coefficients. Convex optimization results from
[8] are used. The optimization problem is defined with two
constraints. First, we look for a covariance (resp. precision)
matrix Σ associated with a graph (V, E), meaning it satisfies
the constraint

Σ = (Σij) PSD , Σij = 0, (i, j) /∈ E . (1)

We also want to vary the signal-to noise ratio therefore we
impose the following constraint:

1

2|E|
∑
i̸=j

Σij ≥ b. (2)

We seek to solve the following optimization problem:

minimize
C

1

2
∥Σ− Σ̄∥2F ,

subject to constraints (1) and (2),
(3)

with Σ̄ a given arbitrary matrix that we want to approach.
Since the objective function in (3) is convex, a solution exists
whenever the constraints are feasible.

To create our datasets we choose to set the dimension of
the matrices at p = 51 (based on a real world fMRI data
application that motivates this study). Figure 1 gives the values
of b and d where we are able to provide matrices satisfying
the constraints.

Fig. 1. Representation of the set of matrices
we were able to simulate with respect to the
mean value of the non-zeros coefficients b
and the proportion of edges d, with a chordal
graph structure.

We choose 300 matrices among these represented here, with
b > 0.2. For each generated matrix Σ, we can simulate
T i.i.d realisations of the centered Gaussian vector X =
(X1, . . . , Xp)

⊤ where the matrix Σ is either the precision or
the covariance matrix. We consider here several number of
realisations, T ∈ {100, 500, 1000}, to see the robustness of
the procedures to the sample size.

III. EDGES DETECTION METHODS

We focus on edge detection models that construct a binary
connectivity matrix by estimating correlations or partial cor-
relations based on i.i.d. data.

A. Hypothesis Testing

Statistically we can construct an hypothesis test for each
edge: for each pair (i, j) Hi,j

0 : ρi,j = 0 and Hi,j
1 : ρi,j >

0. Here, since we have supposed that the data is Gaussian,
we focus on Pearson correlation coefficients. Other tests like
permutation tests can be used with less assumptions on the
data. We are in a configuration of multiple testing [9]. When
computing several tests at a risk α, we obtain the set R =
{(i, j), Hi,j

0 is rejected} using the same data, so we need to
apply a correction to control the error at the global level.
• Control of the FWER: the Family Wise Error Rate

(FWER) is defined as: FWER = P(∃(i, j) ∈ R, ρi,j = 0).
Representing the probability of having at least one pair
that have been considered significantly correlated wrongly.



To control this probability at a level α, we can apply the
Bonferroni procedure [10].

• Control of the FDR: the False Discovery Rate (FDR) is
defined as: FDR = E[Q] where Q =

{|(i,j)∈R,ρi,j=0|}
|R|∧1 .

This quantifies the expectation of the ratio in R to have
been wrongly rejected. Several procedures exist to control
the FDR at a level α like Benjamini-Yekutieli procedure
[11]. We note that Benjamini-Hochberg is regularly used
for correlation study, however it supposes independence or
restrictive dependence structures between the data used for
each test, which are a priori not satisfied in our framework.

Multiple testing with correction procedures are known to
be very conservative, indeed by construction they favor the
null hypothesis. Therefore, in practice, many proposed new
methods that are constructed to be less conservative of the
null hypothesis, but with no control on the risk.

B. Thresholding

The most classic way to detect the edges is to apply a
threshold on the correlations or partial correlations estimators.
The choice of the threshold is either arbitrary or calibrated on
the data:

• Fixed threshold. An arbitrary threshold between 0 and 1
is applied to the correlation or partial correlation estimator
ρ̂i,j . This method is the most commonly used as it is easy
to interpret and calculate. It is the main method in the
toolbox of neuroscientists such as in [12]. However there
is no existing consensus about the choice of the threshold.

• Fixed proportion. A threshold is applied that guarantees
the same proportion of edges for each estimated graph. This
is used in practice to compare a group of patients with a
group of controls. Some articles, such as [13], have warned
practitioners about the risks of this method, because the
total functional connectivity activity is an information that
is erased in this procedure.

• Mixture-Model threshold. Several methods such as [14]
and [15] have proposed to model the values of interest
(correlations, partial correlations or transforms of those
quantities) as mixture models. They suppose that the values
come from a mixture of two distributions: one representing
the zeros and the other the significant edges. They apply a
threshold based on the distribution of zeros they estimate.

• Percolation threshold. Alternative methods have been de-
veloped to find the optimal threshold to apply community-
detection method. They focus more on the graph properties
to find a threshold. For instance, [16] choose the greater
threshold that, once applied to the Pearson correlation
matrix, still provides a connected graph.

C. Sparse Gaussian Graphical Model

To avoid finding the optimal threshold, we can directly use
a method that estimates a covariance or precision matrix with
zeros. The most common one is based on Gaussian graphical
models. Using these models, zeros of the matrices are directly

estimated. However, it is needed to have a Gaussian assump-
tion on the data which is not the case for multiple testing
which require only an hypothesis on asymptotic normality.
• Graphical Lasso. This method provides a sparse estimator

for the precision matrix. Because of the necessity to cali-
brate a regularization parameter using cross-validation, this
method may be sensitive to small sample sizes T .

Other graphical Gaussian models exist, but they do not give
better results when directly estimating a matrix with zeros as
shown in [3]. Finally, a similar method has been developed to
estimate the covariance matrix in [17], but without applications
to fMRI and with a time consuming algorithm.

IV. RESULTS

A. Metrics of Performance

The strength of this paper relies on our simulation process,
that allows us to have for each dataset a ground-truth graph G∗

respecting the set of parameters (d, b, T ). It defines a ground-
truth adjacency matrix A∗: each edge (i, j) is either present
(A∗

ij = 1) or absent (A∗
ij = 0). During most edge detection

methods, we first estimate connectivity indicators Ĉ, where
each edge (i, j) has a measure cij . We can compare these
connectivity indicators using the Area Under the Curve.

Area Under the Curve (AUC): the AUC evaluates how
well the connectivity indicators {cij} rank the true edges
higher than the non-edges. AUC = 1 indicates perfect ranking,
AUC = 0.5 corresponds to random ranking. It is defined as the
probability that a randomly chosen true edge (i, j) has a higher
score than a randomly chosen non-edge (k, l):

AUC = P(cij > ckl | A∗
ij = 1, A∗

kl = 0) ≈
R1 − N1(N1+1)

2

N1N0
,

where N1 and N0 are the numbers of positive and negative
instances, respectively, and R1 is the sum of the ranks of the
positive instances when sorting all scores in ascending order.

Once an edge detection is applied to obtain a binary
estimated graph Ĝ with adjacency matrix Â, we define the
following indicators of quality:

• Accuracy:
TP + TN

TP + TN + FP + FN

• True Positive Rate (TPR):
TP

TP + FN

• False Positive Rate (FPR):
FP

FP + TN

where TP (True Positives) are correctly detected edges (Âij =
1, A∗

ij = 1), TN (True Negatives) are correctly absent edges
(Âij = 0, A∗

ij = 0), FP (False Positives) are incorrectly added
edges (Âij = 1, A∗

ij = 0), and FN (False Negatives) are
missed edges (Âij = 0, A∗

ij = 1).

B. Comparison of the Connectivity Estimators

A first evaluation of the differences between the estimators
used for either correlations or partial correlations is illustrated
in Figure 2 using the AUC. We have seen that we can estimate
them with common empirical estimators or using Ledoit-Wolf



regularization. A high AUC means that the measure is able to
greatly recover the adjacency matrix by thresholding, subject
to finding the optimum threshold, which is the focus of the
next part.

Fig. 2. Comparison of the AUC of different connectivity indicators when
T = 100, depending on the mean of the non-zero coefficients (b) and the
graph density (d).

In Figure 2, we observe that empirical partial correlations
and empirical correlations yield similar results, both being
influenced by the value of b, as expected. Still, empirical
partial correlations perform slightly worse. The Ledoit-Wolf
correlation matrix estimator does not provide a clear improve-
ment, even for small values of d, meaning the ranking of con-
nectivity measures remains unchanged. When using Ledoit-
Wolf to estimate partial correlations, we lose a significant
amount of information, especially for large d, likely due to
the smoothing effect applied to the covariance matrix.

C. Impact of the Parameters on the Threshold

Now that we have an idea of the performance of the
connectivity measures to discriminate the zeros, we want
to represent directly the accuracy obtained when applying
different thresholds between 0 and 1. Indeed, even if the
connectivity indicators are highly discriminative, it does not
help us to find an optimal threshold. Here we present only the
study with the empirical correlations, but the results where
globally the same with partial correlations.

Figure 3 displays the accuracy with respect to the applied
threshold. The objective is to show how the optimal threshold
for accuracy changes, depending on the parameters d, b and
T . When the threshold is near 0, the estimated graph is full,
thus the accuracy is equal to d, the proportion of existing
edges. When the threshold is near 1, the accuracy is equal to
1− d, the proportion of zeros in the ground-truth graph. The
peak of accuracy arises when we indeed detect meaningful
edges. To make the effects of d clear, we represent the curves
obtained for the matrices for different range of d (depending
on the row). Meanwhile the columns depend on the number
of realizations (from T = 100 to T = 1000). Finally the color
of the curve is associated with the value of b.

First, the value of d impacts the choice of the optimal
threshold as we can see that the differences of shape for these
curves depend on d. We can also see that when T increases, the
optimal threshold is closer to zero. This is directly explained
by the fact that the empirical correlation converges correctly
to zero if there is no edge. Finally, the higher the value of
b, the wider the range of thresholds where the accuracy is

Fig. 3. Accuracy obtained when applying different thresholds on an em-
pirical correlation matrix, depending on the graph density d, the number of
observations T , and the mean value of the non-zeros coefficients b.

good. These results emphasize how thin the range of useful
thresholds is, and how the three parameters considered (d,
b and T ) should be taken into account when choosing a
threshold.

D. Comparison of the Edge Detection Methods

The three edge detection methods compared here are the
multiple testing approach with Bonferroni procedure, the
thresholding procedure with a Percolation threshold, and the
Graphical Lasso with a cross-validation step. This way we
have one method for each types of edge detection methods.
We choose to represent once again the 300 matrices by their
value of b and d, this way we can represent by color different
measures of performance for the edges detection methods:
Accuracy, False Positive Rate and True Positive Rate.

These are the notable behaviour of the methods based on
the Figure 4 when T = 100:
• Graphical Lasso: If the graph is not sparse, this method

struggles to provide accurate results when T = 100.
• Percolation threshold: Its performance appears to depend

more on d than on b. This is expected, as the method is
designed to focus solely on the graph structure.

• Multiple testing with Bonferonni correction: Considering
accuracy alone, one might conclude that the Percolation
threshold method and multiple testing behave similarly.
However, a closer look at the true positive rate (TPR) re-
veals a key difference: it is sensitive to d for the Percolation
threshold method, while it is solely influenced by b for the
multiple testing approach.



Fig. 4. Comparison of the Bonferonni procedure, the Graphical Lasso and the
Percolation threshold methods (from left to right) when T = 100. The y-axis
is the mean value of non-zeros coefficients (b) and the x-axis is the graph
density (d). Several metrics are considered (from top to bottom): Accuracy,
False Positive Rate (FPR) and True positive Rate (TPR).

Fig. 5. Comparison of the Bonferonni procedure, the Graphical Lasso and the
Percolation threshold methods (from left to right) when T=1000: we plot the
mean value of non-zeros coefficients (d) depending on the degree of density
(d) and color by the accuracy.

Figure 5 further demonstrates that these methods behave
differently as T increases since we have now T = 1000:
• Bonferroni multiple testing and Graphical Lasso follow the

same pattern as before for Accuracy but with improved
overall performance.

• Percolation thresholding does not significantly improve
results. While it removes noise-induced edges, it also elimi-
nates true edges for large d since it prioritizes sparsity while
preserving connectivity. Unlike other methods, Percolation
thresholding is based on the graph structure rather than on
statistical properties of the correlation estimator. Therefore,
the issue persists even for high T .

V. CONCLUSION AND PERSPECTIVES

Our benchmark provides a simple, efficient and original
method to evaluate the accuracy of the binarization of con-
nectivity matrices with ground truth. Codes and datasets are
available to reproduce the experiments1. No sparsity assump-
tions are needed and this covers different graph configurations,

1https://gricad-gitlab.univ-grenoble-alpes.fr/polisank/
benchmarking-brain-connectivity-graph-inference-a-novel-validation-approach/

including those observed in neuroimaging. Our analysis high-
lights that the optimal threshold is not a universal constant but
rather depends on at least three key parameters: d, b, and T .
Any chosen method must take these effects into account to
ensure reliable and interpretable results. As future work, we
need to extend to other graph structures including small-world
and preferential attachment for example. Finally, weighted
graphs may be also used in the context of neuroimaging.
Weights are also affected by errors in the estimations, and the
same strategy of validation can be used with methods inferring
weighted graphs.
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