# Benchmarking Brain Connectivity Graph Inference: A Novel Validation Approach <sup>1</sup>

Alice Chevaux<sup>†</sup>, Ali Fakhar<sup>†</sup>, Kévin Polisano<sup>†</sup>, Irène Gannaz<sup>\*</sup>, Sophie Achard<sup>†</sup>

<sup>†</sup>Univ. Grenoble Alpes, CNRS, Inria, LJK, F-38000 Grenoble, France <sup>\*</sup>Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France

#### EUSIPCO 2025

Benchmark

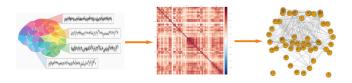


Figure 1: Illustration of the usual inference of graph for fMRI data

Objective: Recover the adjacency matrix A of a matrix  $\Sigma$  a positive semi-definite matrix

- Σ represent the connectivity (resp. correlation or precision matrix)
- Observations are i.i.d realisations of  $\mathbf{X} = (X_1, \dots, X_p)^\top \longrightarrow \mathcal{N}(0, \Sigma)$  or resp.  $\mathbf{X} \longrightarrow \mathcal{N}(0, \Sigma^{-1})$
- number of observations: T, dimension of the matrix:  $p \times p$



#### Problem Statement

#### Shortcomings of Current Approaches:

- For statistical methods
  - 1 Few mathematical guarantee with realistic settings (T low, p high)
  - 2 Difficulty to simulate matrices

## Problem Statement

#### Shortcomings of Current Approaches:

- For statistical methods
  - Few mathematical guarantee with realistic settings (T low, p high)
  - 2 Difficulty to simulate matrices
- For benchmark papers
  - Rely on real datasets [3, 6]
  - 2 Simulate under the assumption of sparsity [5]



#### Problem Statement

#### Shortcomings of Current Approaches:

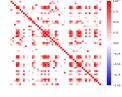
- · For statistical methods
  - Few mathematical guarantee with realistic settings (T low, p high)
  - 2 Difficulty to simulate matrices
- For benchmark papers
  - Rely on real datasets [3, 6]
  - 2 Simulate under the assumption of sparsity [5]

#### Objectives:

- ▶ Simulate PSD matrices according to parameters that we choose
- ▶ Propose a pipeline to measure the performance of a method



## Parameters of interest



 Graph density (d): proportion of edges in the adjacency matrix

Figure 2: PSD matrix with b = 0.52 and d = 0.22

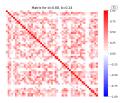


Figure 3: PSD matrix with b = 0.24 and d = 0.68

## Parameters of interest



- edges in the adjacency matrix
- Sample size (T)



Benchmark

Figure 2: PSD matrix with b = 0.52 and d = 0.22

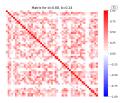
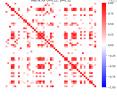


Figure 3: PSD matrix with b = 0.24 and d = 0.68

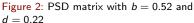


## Parameters of interest



Benchmark

- **Graph density** (d): proportion of edges in the adjacency matrix
- Sample size (T)
- Signal-to-noise level (b): the mean value of the nonzero coefficients in  $\Sigma$



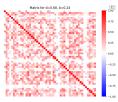


Figure 3: PSD matrix with b = 0.24 and d = 0.68

## Convex Optimization

#### **Objectives**

- Find correlation matrix matching adjacency matrix A (with a number of edges n<sub>A</sub>)
- Control signal-to-noise ratio

• Choose a target matrix  $\bar{\Sigma}$  (initialisation value)

#### **Optimization Problem**

$$\Sigma \succcurlyeq 0, \Sigma_{ii} = 1, \quad A_{ij} = 0 \Longrightarrow \Sigma_{ij} = 0.$$
 (1)

$$\frac{1}{2|n_A|}\sum_{i\neq j}\Sigma_{ij}\geq b. \tag{2}$$

minimize 
$$\frac{1}{2} \|\Sigma - \bar{\Sigma}\|_F^2$$
, subject to constraints (1) and (2),



#### Simulation of a set of matrices

- Pipeline of simulation:
  - 1 simulate A according to a type of graph for different graph densities d
    - ${\color{red} 2}$  sample  ${\color{blue} \underline{b}}$  between 0 and 1
    - $oldsymbol{3}$  sample  $ar{\Sigma}$
- Chordal graph simulation offer a larger range of b for every density

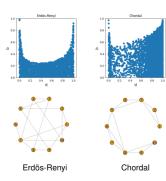


Figure 4: Representation of the set of matrices we were able to simulate with respect to the mean value of the non-zeros coefficients b and the proportion of edges d, with a chordal graph structure.

Benchmark

•0000

## Methods to compare

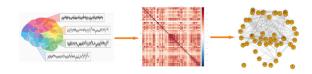


Figure 5: Illustration of the usual inference of graph for fMRI data

Methods with an arbitrary threshold:

- Proportional thresholding
- Hard-thresholding

Statistical methods to choose a threshold:

- Multiple testing with correction [7],[1],[4]
- Percolation-threshold [2]
- Threshold based on a mixture-model

Sparse Gaussian Graphical Model

Graphical Lasso



## Is there an optimal threshold?

- Hard-thresholding consists in applying a threshold  $\tau$  between 0 and 1 on the empirical correlation matrix  $\hat{\Sigma}$  to obtain  $\hat{A}(\tau) = (\hat{\Sigma} > \tau)$
- Limit cases :  $\hat{A}(\tau) = \begin{cases} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} & \text{if } \tau = \mathbf{0} \\ \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix} & \text{if } \tau = \mathbf{1} \end{cases}$
- To compare  $\hat{A}$  and  $\hat{A}$  we use:

Accuracy: 
$$\frac{TP + TN}{TP + TN + FP + FN}$$

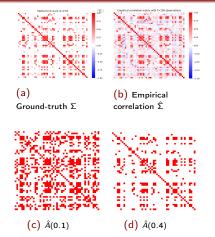


Figure 6: Differences between the ground-truth correlation matrix  $\Sigma$ , the empirical correlation matrix obtained with T=100 observations and the  $\hat{A}(\tau)$  adjacency matrix estimated using  $\tau=0.1$  and  $\tau=0.4$ 

Introduction

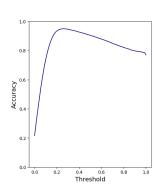
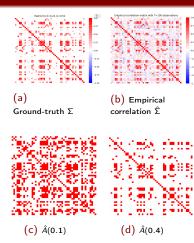


Figure 6: Accuracy obtained when applying different thresholds on an empirical correlation matrix for a number of observations T = 100



Benchmark

00000

Figure 7: Differences between the ground-truth correlation matrix Σ, the empirical correlation matrix obtained with T=100 observations and the  $\hat{A}(\tau)$  adjacency matrix estimated using  $\tau = 0.1$  and  $\tau = 0.4$ 

## Is there an optimal threshold?

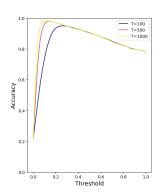
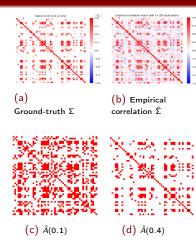


Figure 6: Accuracy obtained when applying different thresholds on an empirical correlation matrix depending on the number of observations T



Benchmark

00000

Figure 7: Differences between the ground-truth correlation matrix Σ, the empirical correlation matrix obtained with T= 100 observations and the  $\hat{A}( au)$  adjacency matrix estimated using au=0.1 and au=0.4

## Effects of parameters on the optimal threshold

How does the parameters d and b affect the optimal threshold we hope to find?

- Accuracy itself is not enough to evaluate a method due to d
- The threshold choice should depend on b and T

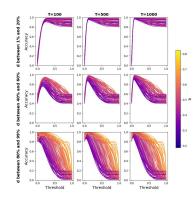


Figure 8: Accuracy obtained when applying different thresholds on an empirical correlation matrix, depending on the graph density d, the number of observations T, and the mean value of the non-zeros coefficients b

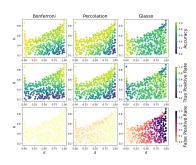
# Global Performances of calibrated methods (1)

To compare  $\hat{A}$  and A we use:

• Accuracy: 
$$\frac{TP + TN}{TP + TN + FP + FN}$$

- True Positive Rate (TPR):  $\frac{TP}{TP + FN}$
- False Positive Rate (FPR):  $\frac{FP}{FP + TN}$

where TP (True Positives) are correctly detected edges  $(\hat{A}_{ij} = 1, A_{ii}^* = 1)$ , TN (True Negatives) are correctly absent edges  $(\hat{A}_{ij} = 0, A_{ii}^* = 0)$ , FP (False Positives) are incorrectly added edges Figure 9: Accuracy, False Positive Rate and  $(\hat{A}_{ij} = 1, A_{ii}^* = 0)$ , and FN (False Negatives) are missed edges ( $\hat{A}_{ij} = 0, A_{ii}^* = 1$ ).



True positive Rate of 3 methods (Multiple testing with Bonferonni, Percolation thresholding and Graphical Lasso) for differents PSD matrices depending on b and d for T = 100

## Global Performances of calibrated methods (2)

▶ What are the parameters that affect the performances of the different methods?

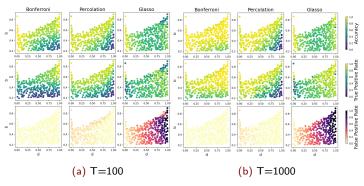


Figure 10: Comparison of the Bonferonni procedure, the Graphical Lasso and the Percolation threshold methods (from left to right) using several metrics (from top to bottom): Accuracy, False Positive Rate (FPR) and True positive Rate (TPR).



#### Conclusion

#### Contributions:

- Method to simulate PSD matrices according to parameters
- Pipeline to evaluate a method
- Meaningful comparisons for users to have a better understanding of the limitations and particularities of well-known methods

#### Perspectives:

- Include new statistical methods and new metrics of performance
- Propose a ready-to-use package for users to confront their own method



code is available at : https://gricad-gitlab.univ-grenoblealpes.fr/users/polisank/projects



# Bibliography

- [1] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. *Pubblicazioni del R istituto superiore di scienze economiche e commericiali di firenze*, 8:3–62, 1936.
- [2] Cécile Bordier, Carlo Nicolini, and Angelo Bifone. Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold. Frontiers in neuroscience, 11:441, 2017.
- [3] Kamalaker Dadi, Mehdi Rahim, Alexandre Abraham, Darya Chyzhyk, Michael Milham, Bertrand Thirion, Gaël Varoquaux, Alzheimer's Disease Neuroimaging Initiative, et al. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage, 192:115–134, 2019.
- [4] Jelle J Goeman and Aldo Solari. Multiple hypothesis testing in genomics. Statistics in medicine, 33(11):1946–1978, 2014.
- [5] Ginette Lafit, Francis Tuerlinckx, Inez Myin-Germeys, and Eva Ceulemans. A partial correlation screening approach for controlling the false positive rate in sparse Gaussian graphical models. *Scientific reports*, 9(1):17759, 2019.
- [6] František Váša and Bratislav Mišić. Null models in network neuroscience. Nature Reviews Neuroscience, 23(8):493–504, 2022.
- [7] Daniel Yekutieli and Yoav Benjamini. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. *Journal of Statistical Planning and Inference*, 82(1-2):171–196, 1999.

