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Introduction
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Motivations for fMRI data
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Figure 1: lllustration of the usual inference of graph for fMRI data

Objective: Recover the adjacency matrix A of a matrix X a positive semi-definite
matrix

® Y represent the connectivity (resp. correlation or precision matrix)

® Observations are i.i.d realisations of X = (Xq,...,Xp,)T —> N(0,X) or resp.
X — N(0,=71)

® number of observations: T , dimension of the matrix: p X p
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Problem Statement

Shortcomings of Current Approaches:

® For statistical methods
@ Few mathematical guarantee with realistic settings (T low, p high)
@ Difficulty to simulate matrices
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Problem Statement

Shortcomings of Current Approaches:

® For statistical methods
@ Few mathematical guarantee with realistic settings (T low, p high)
@ Difficulty to simulate matrices

® For benchmark papers
@ Rely on real datasets [3, 6]
@ Simulate under the assumption of sparsity [5]
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Problem Statement

Shortcomings of Current Approaches:

® For statistical methods
@ Few mathematical guarantee with realistic settings (T low, p high)
@ Difficulty to simulate matrices

® For benchmark papers
@ Rely on real datasets [3, 6]
@ Simulate under the assumption of sparsity [5]

Objectives:
» Simulate PSD matrices according to parameters that we choose

» Propose a pipeline to measure the performance of a method
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Generating Sparse Correlation Matrices
[ Je]

Parameters of interest
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® Graph density (d): proportion of Figure 2: PSD matrix with b = 0.52 and
edges in the adjacency matrix d—=022

Matrx for d=0.68, b=0.24

Figure 3: PSD matrix with b = 0.24 and
d =0.68
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Generating Sparse Correlation Matrices
[ Je]

Parameters of interest

3_:_ _.-_..'_.. -'-::n_. Iﬁ

® Graph density (d): proportion of Figure 2: PSD matrix with b = 0.52 and
edges in the adjacency matrix d—=022

Matrx for d=0.68, b=0.24

® Sample size (T)

® Signal-to-noise level (b): the mean : o]
value of the nonzero coefficients in *
Figure 3: PSD matrix with b = 0.24 and

d =0.68
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Generating Sparse Correlation Matrices
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Convex Optimization

Objectives Optimization Problem
® Find correlation matrix
matching adjacency matrix
A (with a number of edges
na)

1

® Control signal-to-noise ratio 2|n4]

> Tj>b ()

i#J

1 —
= minimize - || — £||3,
® Choose a target matrix C 2
(initialisation value) subject to  constraints (1) and (2),

®3)
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Generating Sparse Correlation Matrices
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Simulation of a set of matrices

Chordal

® Pipeline of simulation:

@ simulate A according to a type — o @
of graph for different graph ® ® ® ®
densities d ® > < %
@ sample b between 0 and 1
© sample & ? ° ® o
® ® ® @
Erdds-Renyi Chordal

® Chordal graph simulation offer a

larger range of b for every density Figure 4: Representation of the set of

matrices we were able to simulate with
respect to the mean value of the non-zeros
coefficients b and the proportion of edges
d, with a chordal graph structure.
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Methods to compare
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Figure 5: Illustration of the usual inference of graph for fMRI data

Methods with an arbitrary Statistical methods to choose a Sparse Gaussian Graphical
threshold: threshold: Model
® Proportional ® Multiple testing with ® Graphical Lasso
thresholding correction [7],[1],[4]
® Hard-thresholding ® Percolation-threshold [2]

® Threshold based on a
mixture-model
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Is there an optimal threshold ?

Hard-thresholding consists in f : PR S - I
applying a threshold 7 between FREREESTa W Rt L
0 anc? 1. on the e.m)e:lrlcal o (a) (b) Empirical
correlation matrix 2. to obtain Ground-truth ¥ correlation 3

A(T) = (i >7)
® Limit cases :

111 " " 5 - -
(111) ifr=0 PoTmiy mmae
111

A(r) = e

100 . .

(0 1 o) fr=1 L

aa1 m-r

® To compare A and A we use: : E

Accuracy: LI

TP + TN R N

TPL TN+ FP 1 EN (c) A0.1) (d) A(0.4)

Figure 6: Differences between the ground-truth correlation
matrix ¥, the empirical correlation matrix obtained with

T = 100 observations and the A(7) adjacency matrix
estimated using 7 = 0.1 and 7 = 0.4
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Is there an optimal threshold ?

(a) (b) Empirical

correlation ¥
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Figure 6: Accuracy obtained when ~ ~
applying different thresholds on an (C) A(0.1) (d) A(0.4)
empirical correlation matrix for a number _.
of observations T = 100 Figure 7: Differences between the ground-truth correlation
matrix ¥, the empirical correlation matrix obtained with
T = 100 observations and the A(7) adjacency matrix
estimated using 7 = 0.1 and 7 = 0.4
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Is there an optimal threshold ?
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Figure 6: Accuracy obtained when
applying different thresholds on an
empirical correlation matrix depending on
the number of observations T
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Figure 7: Differences between the ground-truth correlation
matrix X, the empirical correlation matrix obtained with

T = 100 observations and the A(7) adjacency matrix
estimated using 7 = 0.1 and 7 = 0.4
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Effects of parameters on the optimal threshold

T=100 T=500 , __T=1000

» How does the parameters d and
b affect the optimal threshold
we hope to find ?

® Accuracy itself is not enough to
evaluate a method due to d

® The threshold choice should
depend on band T

d between 80% and 99% d between 40% and 60% d between 1% and 20%

Threshold Threshold Threshold

Figure 8: Accuracy obtained when applying
different thresholds on an empirical correlation
matrix, depending on the graph density d, the
number of observations T, and the mean value of
the non-zeros coefficients b.
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Global Performances of calibrated methods (1)

Bonferroni Percolation Glasso
To compare A and A we use: - £ -. - fi§
W kA g
TP+ TN i s& ) :
® Accuracy: ———————————
TP+ TN + FP + FN ) D

® True Positive Rate (TPR): —— ?
u itiv ( ) TP FN é‘i‘é ey |
® False Positive Rate (FPR): —— »
FP+ TN “

where TP (True Positives) are correctly detected o M
edges (Aj = 1,A}; = 1), TN (True Negatives) o o

d : a a

False Positive Rate True Positive Rate

are correctly absent edges (A; = 0,A; = 0),
FP (False Positives) are incorrectly added edges Figure 9: Accuracy , False Positive Rate and
(AU =1, A; = 0)’ and FN (False Negatives) are True positive Rate of 3 methods (Multiple testing

. ~ - with Bonferonni, Percolation thresholding and
missed edges (A"f =0, Aij = 1)' Graphical Lasso) for differents PSD matrices
depending on b and d for T = 100
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Global Performances of calibrated methods (2)

» What are the parameters that affect the performances of the different
methods ?

Bonferroni Percolation Glasso Bonferroni Percolation Glasso
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Figure 10: Comparison of the Bonferonni procedure, the Graphical Lasso and the Percolation
threshold methods (from left to right) using several metrics (from top to bottom): Accuracy, False
Positive Rate (FPR) and True positive Rate (TPR).
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Conclusion

Contributions:
® Method to simulate PSD matrices according
to parameters @ 1—I-| @
® Pipeline to evaluate a method a1
® Meaningful comparisons for users to have a o

better understanding of the limitations and
particularities of well-known methods

Perspectives:
® Include new statistical methods and new . .
. code is available at :
metrics of performance https:/ /gricad-gitlab.univ-grenoble-

® Propose a ready-to-use package for users to 2lPes-fr/users/polisank/projects
confront their own method
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