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Abstract—This work deals with the generation of theoretical
correlation matrices with specific sparsity patterns, associated
to graph structures. We present a novel approach based on
convex optimization, offering greater flexibility compared to
existing techniques, notably by controlling the mean of the entry
distribution in the generated correlation matrices. This allows
for the generation of correlation matrices that better represent
realistic data and can be used to benchmark statistical methods
for graph inference.

Index Terms—Correlation matrices, sparsity, matrix comple-
tion, random graphs, graphical models, convex optimization

I. INTRODUCTION

Graphical models provide a way to represent dependen-
cies between random variables. This field has seen a lot of
interests in recent years, see e.g. [13], [23], [24], [28], [16,
Chapter 7] and references therein. The range of applications
is broad, including genetics [17], proteins study [3], disease
characterization [5], functional brain connectivity [20], or risk
management [21]. The principle is to infer a graph structure
associated with the correlation matrix or the precision matrix
(inverse of the correlation matrix). To assess the quality of
estimation procedures, simulation studies are essential. This
requires generating (theoretical) correlation or precision ma-
trices associated to a given graph structure which involves
imposing zeros, that is often non-trivial. The aim of this paper
is to present a method for generating such matrices.

Among the generation procedures proposed in the litera-
ture for correlation matrices, we can cite the so-called vines
and onion procedures [25], based on the Beta distribution
established by [22]. Alternatively, [10], [29] use the Cholesky
decomposition to generate correlation matrices. We refer to
these articles for a bibliographic overview of existing methods.
In [2], the distribution of brain connectivity correlations was
found to be centered around positive values. However, the
proposed methods all generate correlation matrices whose
entry distribution is centered around zero. Our objective is
to propose a new approach based on convex optimization that
allows control over this distribution, particularly its mean.

This paper is organized as follows. Section II introduces
key definitions and notations. Section III reviews related work.
Section IV describes the proposed approach, and Section V
presents the results and comparison with other approaches.

This work was supported by the Agence Nationale de la Recherche under
the France 2030 programme, reference ANR-23-IACL-0006.

II. NOTATION

For a fixed dimension p, we denote matrices in Rp×p. A
real symmetric p× p matrix A is positive semidefinite (PSD)
if x⊤Ax ≥ 0 for all x ∈ Rp. It is positive definite (PD) if
x⊤Ax > 0 for all non-zero x ∈ Rp.

Let x ∈ Rp be a random vector with covariance matrix Σ,
defined as: Σ = E[(x − E[x])(x − E[x])⊤] = (σi,j)i,j=1,...,p.
The corresponding correlation matrix C ∈ C is defined by
cij =

σij√
σiiσjj

for all (i, j) ∈ {1, . . . , p}, or equivalently

C = (diag(Σ))−
1
2 Σ (diag(Σ))−

1
2 . The set C of correlation

matrices satisfies

∀C ∈ C diag(C) = 1, ∀i, j ∈ {1, 2, . . . , p} − 1 ≤ cij ≤ 1.
(1)

From a generative perspective, working with correlation ma-
trices and precision matrices is similar. Therefore, we fo-
cus on correlation matrices. Generating a correlation matrix
involves constructing a symmetric PSD matrix that satisfies
condition (1) [19, Problem 7.1.].

A graph G is a mathematical structure used to represent pair-
wise relations between objects. Formally, a graph is defined as
G = (V, E), where V = {v1, v2, . . . , vp} is the set of vertices,
and E ⊂ V×V is the set of edges. An edge is a pair of vertices
connected by the graph. We look for a correlation matrix C
that is associated with the graph, meaning it satisfies cij = 0
if (i, j) /∈ E and cij ̸= 0 otherwise, for all (i, j) ∈ V ×V with
i ̸= j. The weights of the edges in the graph correspond to the
values in the correlation matrix. In other words, we impose
sparsity on certain relationships. We define E as the set of
non-edges, corresponding to the zero entries in the matrix C.
Thus, our objective is to generate a correlation matrix with a
prescribed set E of zero entries. This problem can be viewed
as a matrix completion problem [31, Chapter 10].

In the following, we denote by C(G) the set of correlation
matrices associated with a given graph G, that is satisfying the
following constraints:

C = (cij) PSD and satisfies (1), cij = 0, (i, j) /∈ E . (2)

We consider different graph structures:
• Erdős-Rényi random graphs [14], probabilistic graphs in

which edges between nodes are formed independently
with a fixed probability;

• Barabási-Albert random graphs [4], scale-free networks
that generate graphs using preferential attachment, where



new nodes are more likely to connect to already well-
connected nodes;

• Watts-Strogatz random graphs [32], small-world network
models that combine high clustering coefficient with short
average path lengths;

• Stochastic Block Models [1], generative models for net-
works where nodes are partitioned into blocks, with
different probabilities of connections within and between
blocks;

• Chordal graphs, graphs in which every cycle of length
greater than three has a chord (an edge connecting two
non-adjacent vertices in the cycle).

A key characteristic of the graph structure is graph density,
which is the ratio of the number of edges and the number of
possible edges. For a graph with |E| edges and p vertices, the
graph density is defined as d = 2|E|

p(p−1) .
In our study, we generate a chordal graph by starting with

a Barabási-Albert graph and adding edges as needed to satisfy
the chordal graph properties. Node numbering is the process
of assigning a unique integer to each node in a graph [31,
Chapter 2]. While node numbering can be arbitrary, Perfect
Elimination Ordering (PEO) is an ordering of the vertices
v1, v2, . . . , vn such that for any vertex vi, the set of neighbors
{vj | j > i and (vi, vj) ∈ E} form a clique, that is a subgraph
in which every pair of distinct vertices is adjacent. A graph
has a PEO if and only if it is chordal [31, Chapter 4].

III. RELATED WORK

The generation of a (theoretical) correlation matrix has been
proposed for example in [22] with a characterization of the
uniform distribution over the space of correlation matrices.
Common approaches include the vines and onion [25]. For
a broader review of available techniques, we refer to the
bibliographic surveys in [11], [29]. Most existing methods,
however, cannot be extended to generate correlation matrices
under structural constraints. In particular, they do not allow
for the generation of correlation matrices that are associated
to a given graph G. Below, we present the methods that, to
our knowledge, can generate such matrices.

A. Chordal Graphs and Cholesky Decomposition

The first approach relies on the Cholesky decomposition.
Let U ∈ Rp×p be the set of upper triangular matrices, with
positive diagonal entries and rows normalized to 1. Define
U(G) ⊂ U as the subset where uij = 0 for all (i, j) ∈ E . If the
graph is ordered (PEO), it is possible to generate the Cholesky
factor U in U(G) by imposing uij = 0 for all (i, j) ∈ E to
obtain a matrix C = UU⊤ ∈ C(G) such that mij = 0 for all
(i, j) /∈ E . For further details, we refer to [10]. In [29], the
authors propose a polar writing of the entries of the Cholesky
factor U ∈ U , and establish the probability distribution of
the induced quantities such that the resulting distribution is
uniform over the set C. Using this polar parametrization, it is
straightforward to incorporate the constraint uij = 0 for all
(i, j) ∈ E , to obtain U ∈ U(G). In [10] the former constraint
is already taken into account. The proposed generation method

is based on the Metropolis-Hastings algorithm [8] and yields
a uniform distribution over C(G).

As mentioned above, these methods assume that the graphs
are ordered, which is generally not the case. In fact, only
chordal graphs can be perfectly ordered [31, Chapter 4].
Therefore, this approach is only available for chordal graphs.

B. Diagonal Dominance and Partial Orthogonalization
To the best of our knowledge, two methods have been

proposed in the literature to generate correlation matrices
associated to a given graph G without requiring a chordal
structure: diagonal dominance and partial orthogonalization.

Diagonal dominance as proposed in [11] can be used to
generate a PD matrix. The idea is to construct a symmetric
matrix C̃, where the elements c̃ij are chosen uniformly at
random from the interval [−1, 1] if (i, j) /∈ Ē , and c̃ij = 0
otherwise. Then, using the following update rule:

∀i ∈ {1, . . . , p} do c̃ii ←
∑

j=1,...,p
i ̸=j

|c̃ij |+ random positive perturbation.

(3)
This follows from the Gershgorin theorem [30]. In Eq.

(3), if the random positive perturbation is omitted, the
method instead produces a PSD matrix. Then, define
C = diag(C̃)−1/2 C̃ diag(C̃)−1/2 to recover a matrix in C.
However, a major drawback of this approach is that it yields
correlation matrices with very low off-diagonal values.

The partial orthogonalization method, proposed in [10],
provides an alternative that works for non-chordal graphs. The
idea is to start with an initial matrix C whose zero entries are
included in the desired sparsity pattern E . The additional edges
of C are then removed using a modified Gram-Schmidt based
partial orthogonalization process. The idea is to write C as
C = QQ⊤ and then iteratively orthogonalizes every row qi.
with respect to the set of rows {qj.s.t.(i, j) /∈ E and j < i}.
In [10], the authors suggest first triangulating the graph G to
obtain a chordal graph, and then applying the Cholesky-based
procedure from [9], as described above. The resulting matrix
is the initialization of the partial orthogonalization algorithm.

In contrast, our proposed method (under some mild condi-
tions) can generate correlation matrices with prescribed zero
patterns, even for non-chordal graphs. Unlike the diagonal
dominance approach, it does not suffer from excessively low
correlation values. Compared to partial orthogonalization, our
method is less sensitive to the initial matrix, in particular
partial orthogonalization depends on the nodes numbering.

IV. PROPOSED APPROACH

The goal of our work is to generate correlation matrices in
C(G), that is satisfying constraints (2). Moreover, additional
constraints can be added, depending on the context. One
of our motivation is to construct correlation matrices with
a distribution that resemble real-world data, particularly in
neuroscience where the latter is shifted to positive values [2].
To reflect this property, we impose this additional constraint
on the mean: for b ≥ −1,

1

2|E|
∑
i̸=j

cij ≥ b. (4)



Taking b ≤ −1 is equivalent to having no constraint.
We seek to solve the following optimization problem:

minimize
C

1

2
∥C− C̄∥2F ,

subject to constraints (2) and (4),
(5)

with C̄ a given arbitrary matrix. With real data, it can be
the empirical correlation matrix. Note that solving (5) ensures
that the mean of the non-diagonal entries is at least b. An
alternative approach would be to maximize tr((1−I)C), where
1 is a matrix of all ones and I is the identity matrix of the
same dimension as C, subject to the initial constraints (1). This
formulation yields a unique solution that maximizes the mean
of the non-diagonal entries. However, since our primary goal
was to approximate the empirical correlation matrix as closely
as possible (see Figure 1), we prioritize formulation (5).

The choice of the square of the Frobenius norm as an
objective function is motivated by dealing with quadratic
optimization, which often yields better convergence properties
compared to linear objectives [7, Chapter 9].

If the objective function is convex and the intersection
of the constraints forms a non-empty convex set, then the
problem has a unique minimizer [7]. Since the objective
function in (5) is convex, a solution exists whenever the
constraints are feasible. Notably, the identity matrix satisfies
the constraints (2), ensuring feasibility in the absence of the
additional constraint (4). In Section V, we examine the impact
of this additional constraint on solution feasibility.

V. RESULTS AND DISCUSSIONS

In our simulations, we consider C ∈ R51×51 and C̄ a
matrix of the same size whose entries are drawn from a
uniform distribution over the interval [−1, 1]. For the pattern E
we use different random graph models, namely Erdős-Rényi,
Barabási-Albert, Watts-Strogatz, and Stochastic Block Model.
Additionally, we generate a chordal graph by triangulating a
Barabási-Albert graph. All graphs are generated using Net-
workX [18].

We solved the optimization problem (5) in Python using
the CVXPY library [12] and tested it on these graph models
over 50 runs1. In some cases, solving (5) yields a matrix with
a minimum eigenvalue close to zero while negative, which
indicates that the matrix is not strictly PSD. To address this, we
apply a shift and normalization strategy. Specifically, we add a
small positive constant ϵ to the diagonal of the solution C̃, i.e.,
C̃ϵ = C̃+ ϵI. Subsequently, we normalize the shifted matrix
C̃ϵ along its main diagonal to obtain the desired correlation
matrix C, defined as C = 1

1+ϵC̃ϵ. The matrix C is not the
minimizer of the objective function, but it is a correlation
matrix that satisfies the constraints2 in (5).

1Most of the computational analysis in this study was performed using the
GRICAD infrastructure, supported by the Grenoble research community. The
code to reproduce the experiments can be found in [15].

2To be more precise, with this post-processing step the mean value changes,
and then constraint (4) may not be satisfied. Increasing b to b(1 + ϵ) allow
to achieve our objective.

A. Comparison with other approaches

For comparison, we consider a graph with 51 nodes, i.e.,
C ∈ R51×51. Figure 1 shows the density of non-diagonal,
non-zero entries. We compare our method with two other
approaches: diagonal dominance and partial orthogonalization.
Specifically, we generate 50 Erdős-Rényi graphs using diag-
onal dominance, partial orthogonalization, and our proposed
method. For our method, we set the target graph density to
0.5. The distribution of correlation values are represented by
red, green, and purple lines, respectively —the orange one is
related to real data and explained below. We set the parameter
b = −1 in our algorithm to facilitate comparison with other
algorithms that do not use a threshold. In our algorithm,
both C̄ and the initial point for the diagonal dominance
method are realizations of a uniform distribution, since we
aim at generating random correlation matrices. Notably, when
using diagonal dominance, no positive perturbation is applied
to ensure the matrix is PSD. As previously mentioned, the
densities obtained using diagonal dominance are concentrated
around low values (red line). Note that our approach (purple
line) gives higher entries in the correlation matrix.
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Fig. 1. Density of non-diagonal, non-zero entries in generated correlation
matrices using different methods (diagonal dominance, partial orthogonaliza-
tion, and our method) compared to the correlation matrix obtained from rat
fMRI data.

B. Influence of the constraint on the mean

We now examine the impact of the constraint in (4), which
modifies the centering of the distribution of correlation entries.
In particular, it may be useful to control the signal-to-noise
ratio in simulation studies, or to generate correlation matrices
more alike real data. While Generative Adversarial Networks
(GANs) can also generate correlation matrices similar to real
data [27], they require a large dataset of observed correlation
matrices, which may not always be available in practice.

In our context, we are motivated by a neuroscience applica-
tion involving functional MRI data acquired on rats. The data
are described and freely available [6]. The recording duration
is 30 minutes with a repetition time of 0.5 seconds, and 3600
time points are thus available at the end of the experiment.
After the preprocessing explained in [6], time series of 51
brain regions for each rat were extracted. We then calculate
the wavelet transform with the Daubechies wavelet of order
8 of the 51 signals. We are interested here in wavelet scale



4, corresponding to the frequency interval [0.06; 0.12] Hz.
There are then 122 wavelet coefficients available for each of
the 51 regions. The distributions of the pairwise correlations
between the wavelet coefficients of the regions for a given rat
are presented in Figure 1.

In Figure 1, the blue line represents the (empirical) cor-
relation matrix of the rat fMRI data, while the orange line
shows the distribution of the (theoretical) correlation matrix
generated using our method. For the real data, we compute
the graph density by selecting the 50% of entries with the
highest absolute values in the correlation matrix. In generating
the synthetic matrix with our method, we set d = 50%
and the parameter b equal to the mean of the entries in
the real-data correlation matrix corresponding to computed
graph (d = 50%). The initial matrix C̄ is here equal to the
empirical correlation of the real data. Figure 1 shows that the
distribution of the simulated data is close to the real one.

Adding constraint (4) may result in an optimization problem
that has no solution. Figure 2 illustrates the proportion of
cases where a valid correlation matrix C ∈ R51×51 is found
for different graph densities and values of b in (5). The
figure considers Erdős-Rényi graphs, but the results vary with
different graph structures. In the figure, the face color is white
if no solution is found, indicating that the constraints do not
intersect in the optimization problem.
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Fig. 2. Proportion of successfully finding a correlation matrix C ∈ R51×51

per bin over different threshold values of b, using an Erdős-Rényi pattern.
White areas indicate cases where no solution was found.

C. Influence of the graph structure

This subsection explores how different graph structures
influence the results. Figure 3 shows the distribution of corre-
lation values for different 50% dense graph types with b = 0.2.
Correlation entries are centered around this value.

In Figure 3, the type of graph has no significant effect on the
density of non-zero and non-diagonal entries of the correlation
matrices. Yet, as shown in [2], we expect that the structure
of the graph may have more influence when increasing the
number of nodes.

The computational cost of solving the optimization prob-
lem is significantly higher than for methods like diagonal
dominance or partial orthogonalization. While increasing the
dimension of C generally raises the execution time, Figure 4
compares execution times for a fixed dimension of 51 across
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Fig. 3. Density of non-zero, non-diagonal elements in the correlation matrix
generated by our algorithm for different random graph models and the Chordal
graph, given a graph edge density of d = 0.5 for C ∈ R51×51. Results are
obtained over 50 runs, with a threshold constraint of b = 0.2.

varying graph densities and models. Overall, the execution
time decreases as the graph density increases.
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Fig. 4. Execution time (in seconds) of our method for computing the
correlation matrix C ∈ R51×51, averaged over 50 runs for each box plot
(representing a different graph type) as a function of the density of non-zero,
non-diagonal elements in the correlation matrix. The parameter b is set to −1.

CONCLUSION AND PERSPECTIVES

In summary, our proposed method offers several advantages.
It does not rely on a chordal structure, guarantees the gen-
eration of a positive semi-definite (PSD) matrix, and avoids
generating near-zero entries in the resulting correlation matrix.
Additionally, it enables the generation of a correlation matrix
that corresponds to a graph related to an empirical correlation
matrix. However, this approach comes at the cost of increased
computational time.

As discussed, execution time increases with dimensionality.
First we may study the capacity of the proposed method
to handle with higher-dimensional settings. For instance, we
will study how increasing the number of nodes affects the
influence of graph structures. For this purpose, the QSDPNAL
algorithm [26] in MATLAB could be considered for solving
quadratic objective functions in high-dimensional problems.
Future work could explore alternative constraints, objective
functions, and optimization algorithms to further enhance
performance.
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