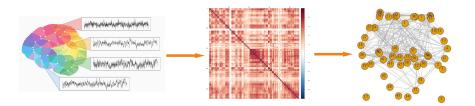
Génération de Matrices de Corrélation avec des Structures de Graphe par Optimisation Convexe

Ali Fakhar, Kévin Polisano, Irène Gannaz, Sophie Achard

CNRS - UGA. Laboratoire Jean Kuntzmann

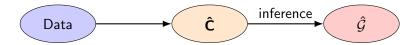
29 août 2025

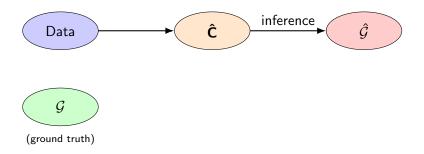
Motivation \sim Graphical modeling

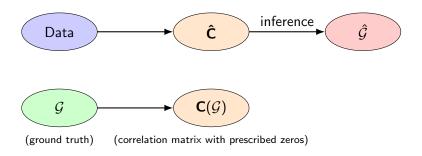


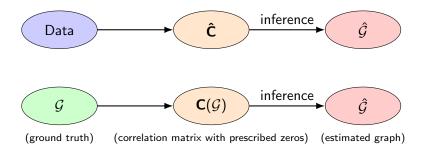
The objective is to model dependence using graphs $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, \dots, p\}$ denotes the set of nodes and $\mathcal{E} = \{(i, j) \in \mathcal{V} \times \mathcal{V}\}$ the set of edges.

- Each node i = 1, ..., p is associated to a random variable X_i .
- We consider the correlation matrix $\mathbf{C} = (\operatorname{corr}(X_i, X_i))_{i,i=1,\dots,p}$.
- There is an edge between nodes (i, j), $i \sim j$, iff $c_{i,j} \neq 0$.











Motivation \sim Generation of Correlation Matrices

Challenge

Generate **theoretical** correlation matrices **C** associated with a specific graph \mathcal{G} for benchmarking purposes.

Objective

- Propose a flexible method for constructing $\mathbf{C} \in \mathcal{C}(\mathcal{G})$ that remains efficient in high dimensions.
- Control the average correlation in order to assess benchmark quality and to better mimic real data.

Key Definitions

- **C** in $\mathbb{R}^{p \times p}$, symmetric, PSD, $c_{ii} = 1$, $|c_{ii}| < 1$.
- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $c_{ii} = 0$ if $(i, j) \notin \mathcal{E}$ (or $(i, j) \in \overline{\mathcal{E}}$).

Five Key Graph Models

Erdős-Rényi Model

Barabási-Albert Model

Watts-Strogatz Model

Stochastic Block Model

Chordal Graph

Five Key Graph Models

Erdős-Rényi Model

Barabási-Albert Model

Watts-Strogatz Model

Stochastic Block Model

Chordal Graph

non-chordal

Outline

- Motivations
- 2 Generation procedure
 - Related work
 - Proposed method
- Results
 - Comparison with other methods
 - Getting close to real data
 - Effect of the graph structure
- Conclusion

Related work

Diagonal Dominance

- Increase the diagonal entries of C, then normalize.
- Con: Produces very small correlations.

Cholesky Decomposition

- C = UU[⊤], with U generated via polar parametrization (Pourahmadi and Wang, 2015) or Metropolis–Hastings (Córdoba, 2018).
- **Pro:** Enables uniform sampling in C(G).
- Con: Applicable only to chordal graphs.

Partial Orthogonalization

- Orthogonalize rows according to $\overline{\mathcal{E}}$ using the Gram–Schmidt algorithm (Córdoba, 2020).
- Con: Highly sensitive to initialization.

Proposed Method

Ali Fakhar, Kévin Polisano, Irène Gannaz, and Sophie Achard (June 2025).

"Generating Correlation Matrices with Graph Structures Using Convex Optimization".

In: IEEE Statistical Signal Processing Workshop (SSP). Edinbourg, United Kingdom

Generate $\mathbf{C} \in \mathcal{C}(\mathcal{G})$ by solving:

Matrix Completion Problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|\mathbf{C} - \bar{\mathbf{C}}\|_F^2 \\ \text{subject to} & \mathbf{C} \succeq 0, \quad \text{diag}(\mathbf{C}) = \mathbf{1}, \quad |c_{ij}| \leq 1 \\ & c_{ij} = 0, \quad \forall (i,j) \in \overline{\mathcal{E}} \end{array}$$

where $\bar{\mathbf{C}}$ denotes the initialization matrix.

Proposed Method

Ali Fakhar, Kévin Polisano, Irène Gannaz, and Sophie Achard (June 2025).

"Generating Correlation Matrices with Graph Structures Using Convex Optimization".

In: IEEE Statistical Signal Processing Workshop (SSP). Edinbourg, United Kingdom

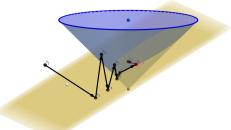
Generate $C \in C(G)$ with additional constaints:

Matrix Completion Problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|\mathbf{C} - \bar{\mathbf{C}}\|_F^2 \\ \text{subject to} & \mathbf{C} \succeq 0, \quad \text{diag}(\mathbf{C}) = \mathbf{1}, \quad |c_{ij}| \leq 1 \\ & c_{ij} = 0, \quad \forall (i,j) \in \overline{\mathcal{E}} \\ & \frac{1}{2|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} c_{ij} \geq b \quad \text{(Mean constraint)} \end{array}$$

Solving the Convex Optimization Problem

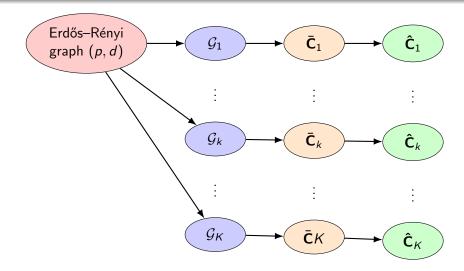
Solved via alternating projections method



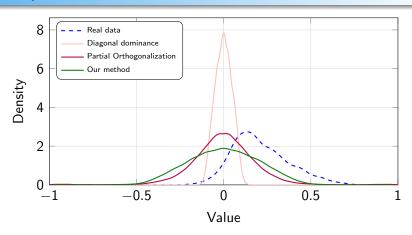
Iterative optimization procedure involving multiple projections. The sequence of black points x_1, x_2, \ldots, x_k illustrates the intermediate iterates. The red point is a solution in $\mathcal{C}(\mathcal{G})$.

Solved via interior-point method (CVXPY)

Sampling procedure from a given Graph Model

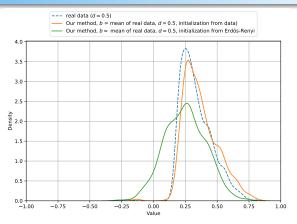


Comparison with other Methods



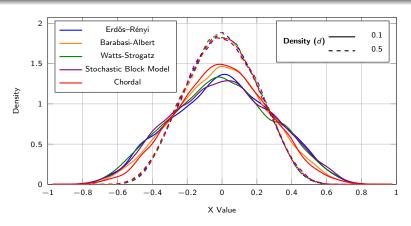
Distribution of non-zero, off-diagonal correlation values averaged over K=50 Erdős–Rényi graphs ($p=51,\ d=0.5$). Data obtained for $\mathbf{C}\in\mathbb{R}^{51\times51}$ with b=-1.

Getting Close to Real Data



Real data: correlation of cerebral connectivity, thresholded to impose d=0.5 (correlations of wavelet coefficients in the $\left[0.06,\,0.12\right]$ Hz band from fMRI data of a live rat).

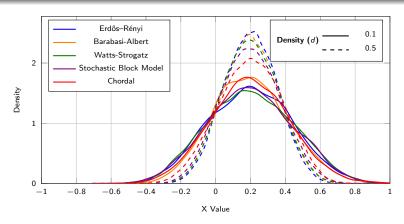
Effect of Graph Structure



Distribution of correlation values averaged over K=50 graphs, for various graph structures and densities (d). Data obtained for $\mathbf{C} \in \mathbb{R}^{51 \times 51}$ with b=-1.

Kévin Polisano

Effect of Graph Structure

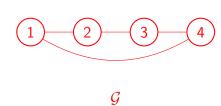


Distribution of correlation values averaged over K=50 graphs, for various graph structures and densities (*d*). Data obtained for $\mathbf{C} \in \mathbb{R}^{51 \times 51}$ with b=0.2

Kévin Polisano GRETSI'25 15/2

SDP Matrix Completion

$$\mathbf{A}(\mathcal{G}) = \begin{pmatrix} a_{11} & a_{12} & ? & a_{14} \\ a_{21} & a_{22} & a_{23} & ? \\ ? & a_{32} & a_{33} & a_{34} \\ a_{41} & ? & a_{43} & a_{44} \end{pmatrix}$$



$$X \succeq 0$$
, $x_{ij} = a_{ij}$, $(i,j) \in \mathcal{G}$

Kévin Polisano

Existence of a Solution

Definition (\mathcal{G} -partial positive)

A matrix $\mathbf{A}(\mathcal{G}) = [a_{ij}]_{\mathcal{G}}$ is \mathcal{G} -partial positive if $a_{ji} = \overline{a_{ij}}$ for all $(i,j) \in \mathcal{E}$, and for every clique C of \mathcal{G} , the principal submatrix $[a_{ij}:i,j\in C]$ of $\mathbf{A}(\mathcal{G})$ is positive definite.

Definition (Graph completable)

A graph G is *completable* if and only if every G-partial positive matrix admits a positive completion.

Theorem (Grone, 1984)

 \mathcal{G} is *completable* $\Leftrightarrow \mathcal{G}$ is chordal.

SDP Matrix Completion

$$\mathbf{A}(\mathcal{G}) = \begin{pmatrix} 1 & 1 & ? & 0 \\ 1 & 1 & 1 & ? \\ ? & 1 & 1 & 1 \\ 0 & ? & 1 & 1 \end{pmatrix} \qquad \boxed{1}$$

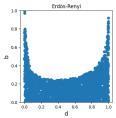
$$X \succeq 0$$
, $x_{ij} = a_{ij}$, $(i,j) \in \mathcal{G}$

 \mathcal{G} is not **chordal**. There is no completion for $A(\mathcal{G})$!

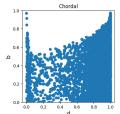
GRETSI'25 Kévin Polisano 18/20

Feasibility Regions

w.r.t the graph density $d = 2|\mathcal{E}|/(p(p-1))$ and the mean b:



Erdős-Rényi



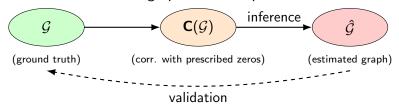
Chordal

Conclusion & Ongoing work

Conclusion

Procedure for generating correlation matrices with a given graph \mathcal{G} :

- Applicable to any graph structure.
- Produces larger correlation values than other algorithms.
- Allows the inclusion of additional constraints.
- Initial results on graph inference procedures.



Conclusion & Ongoing work

Conclusion

Procedure for generating correlation matrices with a given graph \mathcal{G} :

- Applicable to any graph structure.
- Produces larger correlation values than other algorithms.
- Allows the inclusion of additional constraints.
- Initial results on graph inference procedures.

Alice Chevaux, Ali Fahkar, Kévin Polisano, Irène Gannaz, and Sophie Achard (Sept.

2025). "Benchmarking Brain Connectivity Graph Inference: A Novel Validation

Approach". In: 33rd European Signal Processing Conference (EUSIPCO 2025).

Palerme, Italy. URL: https://hal.science/hal-04995510

20/20

Conclusion & Ongoing work

Conclusion

Procedure for generating correlation matrices with a given graph \mathcal{G} :

- Applicable to any graph structure.
- Produces larger correlation values than other algorithms.
- Allows the inclusion of additional constraints.
- Initial results on graph inference procedures.

Perspective

- Higher-dimensional settings.
- Theoretical guarantees for the existence and the sampling.
- More thorough study of inference procedures.

Kévin Polisano

References I

Chevaux, Alice, Ali Fahkar, Kévin Polisano, Irène Gannaz, and Sophie Achard (Sept. 2025). "Benchmarking Brain Connectivity Graph Inference: A Novel Validation Approach". In:

33rd European Signal Processing Conference (EUSIPCO 2025). Palerme, Italy. URL: https://hal.science/hal-04995510.

Córdoba, Irene, Gherardo Varando, Concha Bielza, and Pedro Larrañaga (2018). "A fast Metropolis-Hastings method for generating random correlation matrices". In:

International Conference on Intelligent Data Engineering and Automated Learning. Springer, pp. 117–124.

— (2020). "On generating random Gaussian graphical models". In: International Journal of Approximate Reasoning 125, pp. 240–250.

Fakhar, Ali, Kévin Polisano, Irène Gannaz, and Sophie Achard (June 2025). "Generating Correlation Matrices with Graph Structures Using Convex Optimization". In: IEEE Statistical Signal Processing Workshop (SSP). Edinbourg, United Kingdom.

References II

Grone, Robert, Charles R Johnson, Eduardo M Sá, and Henry Wolkowicz (1984). "Positive definite completions of partial Hermitian matrices". In:

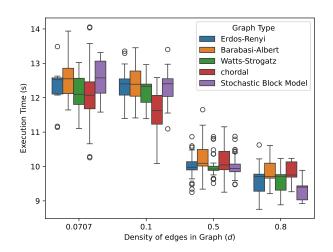
Linear algebra and its applications 58, pp. 109–124.

Pourahmadi, Mohsen and Xiao Wang (2015). "Distribution of random correlation matrices: Hyperspherical parameterization of the Cholesky factor". In: Statistics & Probability Letters 106, pp. 5–12.

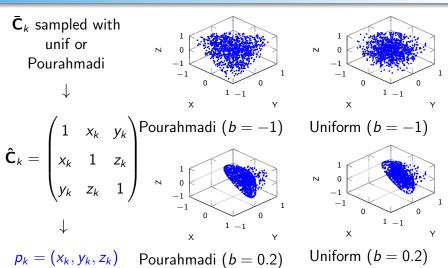
Questions?

Thank you!

Time execution

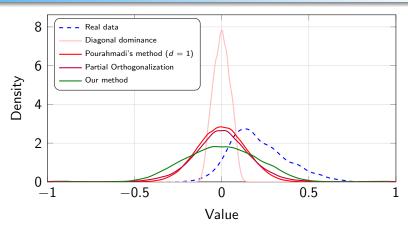


Sampling 3×3 full correlation matrices



Kévin Polisano

Comparison for Chordal Graphs



Distribution of non-zero, off-diagonal correlation values averaged over K=50 chordal graphs ($p=51,\ d=0.5$). Data obtained for $\mathbf{C}\in\mathbb{R}^{51\times51}$ with b=-1.

Kévin Polisano GRETSI'25 3/

Benchmark for graph inference

Context

 \mathcal{G} graph and $\mathbf{C} \in \mathcal{C}(\mathcal{G})$ $X_i \in \mathbb{R}^p$, i = 1, ..., n iid from $\mathcal{N}(0, \mathbf{C})$

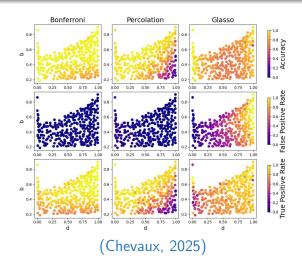
Problem

Inference of \mathcal{G} via (X_i) ? \hookrightarrow Simulation study

Parameters

- 100 simulations for each graph
- n = 1000 observations
- p = 51 nodes
- graph structure: chordal
- d graph density varying
- b mean constraint on non-zero correlations varying

Benchmark for graph inference



Kévin Polisano

Related works - (1) Diagonal Dominance

Method:

- Construct a symmetric matrix C
- If $(i,j) \in \mathcal{E}^c$, then $\tilde{c}_{ii} = 0$
- Update rule:

$$ilde{c}_{ii} \leftarrow \sum_{\substack{j=1,...,p \ i
eq i}} | ilde{c}_{ij}| + \mathsf{random}$$
 positive perturbation

Gershgorin theorem.

• $\mathbf{C} = \operatorname{diag}(\tilde{\mathbf{C}})^{-1/2}\tilde{\mathbf{C}}\operatorname{diag}(\tilde{\mathbf{C}})^{-1/2}$

Drawback: Yields correlation matrices with very low off-diagonal values.

6/8

Related works - (2) Cholesky decomposition

- (Pourahmadi and Wang, 2015) use Cholesky decomposition and polar transformation, using angles as random variables.
- Correlation matrix is $\mathbf{C} = \mathbf{L} \mathbf{L}^{\mathsf{T}}$, where \mathbf{L} is:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \cos\theta_{21} & \sin\theta_{21} & 0 & \dots & 0 \\ \cos\theta_{31} & \cos\theta_{32} & \sin\theta_{31}\sin\theta_{32} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \cos\theta_{n1} & \cos\theta_{n2} & \sin\theta_{n1}\cos\theta_{n3}\sin\theta_{n2}\sin\theta_{n1} & \dots & \prod_{k=1}^{n-1}\sin\theta_{nk} \end{bmatrix}.$$

Kévin Polisano GRETSI'25

Related works - (3) Partial Orthogonalization

- **Approach:** Starts with an initial matrix **C** (with zeros in desired pattern $(\mathcal{E}')^c$).
- Process: Iteratively removes additional edges using a modified Gram-Schmidt-based partial orthogonalization.
- **Mechanism:** Writes $C = QQ^T$ and orthogonalizes each row $\mathbf{q_i}$ with respect to rows $\{\mathbf{q_i} \text{ s.t. } (i,j) \in \mathcal{E} \text{ and } j < i\}$.

8/8