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Structures de Graphe par Optimisation Convexe
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Motivations
Generation procedure

Results

Motivation ∼ Graphical modeling

The objective is to model dependence using graphs
G = (V , E), where V = {1, . . . , p} denotes the set of nodes
and E = {(i , j) ∈ V × V} the set of edges.

Each node i = 1, . . . , p is associated to a random variable Xi .

We consider the correlation matrix C = (corr(Xi ,Xj))i ,j=1,...,p.

There is an edge between nodes (i , j), i ∼ j , iff ci ,j ̸= 0.
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inference

G

(ground truth)
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Motivation ∼ Generation of Correlation Matrices

Challenge
Generate theoretical correlation matrices C associated with a
specific graph G for benchmarking purposes.

Objective

Propose a flexible method for constructing C ∈ C(G) that
remains efficient in high dimensions.

Control the average correlation in order to assess
benchmark quality and to better mimic real data.

Key Definitions

C in Rp×p, symmetric, PSD, cii = 1, |cij | ≤ 1.

G = (V , E) with cij = 0 if (i , j) /∈ E (or (i , j) ∈ E).
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Related work

Diagonal Dominance
Increase the diagonal entries of C, then normalize.
Con: Produces very small correlations.

Cholesky Decomposition
C = UU⊤, with U generated via polar parametrization
(Pourahmadi and Wang, 2015) or Metropolis–Hastings
(Córdoba, 2018).
Pro: Enables uniform sampling in C(G).
Con: Applicable only to chordal graphs.

Partial Orthogonalization
Orthogonalize rows according to E using the
Gram–Schmidt algorithm (Córdoba, 2020).
Con: Highly sensitive to initialization.
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Proposed Method

Ali Fakhar, Kévin Polisano, Irène Gannaz, and Sophie Achard (June 2025).

“Generating Correlation Matrices with Graph Structures Using Convex Optimization”.

In: IEEE Statistical Signal Processing Workshop (SSP). Edinbourg, United Kingdom

Generate C ∈ C(G) by solving:

Matrix Completion Problem

minimize
C

1

2
∥C− C̄∥2F

subject to C ⪰ 0, diag(C) = 1, |cij | ≤ 1

cij = 0, ∀(i , j) ∈ E

where C̄ denotes the initialization matrix.
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Proposed Method

Ali Fakhar, Kévin Polisano, Irène Gannaz, and Sophie Achard (June 2025).

“Generating Correlation Matrices with Graph Structures Using Convex Optimization”.

In: IEEE Statistical Signal Processing Workshop (SSP). Edinbourg, United Kingdom

Generate C ∈ C(G) with additional constaints:

Matrix Completion Problem

minimize
C

1

2
∥C− C̄∥2F

subject to C ⪰ 0, diag(C) = 1, |cij | ≤ 1

cij = 0, ∀(i , j) ∈ E
1

2|E|
∑

(i ,j)∈E

cij ≥ b (Mean constraint)
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Solving the Convex Optimization Problem

Solved via alternating projections method

Iterative optimization procedure involving multiple projections.
The sequence of black points x1, x2, . . . , xk illustrates the
intermediate iterates. The red point is a solution in C(G).

Solved via interior-point method (CVXPY)
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Sampling procedure from a given Graph Model

Erdős–Rényi
graph (p, d)

G1

...

Gk
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GK

C̄1
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C̄K

Ĉ1
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Ĉk

...

ĈK
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Comparison with other Methods
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Distribution of non-zero, off-diagonal correlation values averaged over K = 50

Erdős–Rényi graphs (p = 51, d = 0.5). Data obtained for C ∈ R51×51 with b = −1.
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Getting Close to Real Data

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
De

ns
ity

real data (d = 0.5)
Our method, b = mean of real data, d = 0.5, initialization from data)
Our method, b  mean of real data, d = 0.5, initialization from Erdös-Renyi

Real data: correlation of cerebral connectivity, thresholded to impose d = 0.5

(correlations of wavelet coefficients in the [0.06, 0.12] Hz band from fMRI data of a

live rat).
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Effect of Graph Structure
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SDP Matrix Completion

A(G) =


a11 a12 ? a14

a21 a22 a23 ?

? a32 a33 a34

a41 ? a43 a44

 1 2 3 4

G

X ⪰ 0, xij = aij , (i , j) ∈ G

Kévin Polisano GRETSI’25 16/20



Motivations
Generation procedure

Results

Comparison with other methods
Getting close to real data
Effect of the graph structure

Existence of a Solution

Definition (G–partial positive)
A matrix A(G) = [aij ]G is G–partial positive if aji = aij for all
(i , j) ∈ E , and for every clique C of G, the principal submatrix
[aij : i , j ∈ C ] of A(G) is positive definite.

Definition (Graph completable)

A graph G is completable if and only if every G–partial
positive matrix admits a positive completion.

Theorem (Grone, 1984)

G is completable ⇔ G is chordal.
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SDP Matrix Completion

A(G) =


1 1 ? 0

1 1 1 ?

? 1 1 1

0 ? 1 1

 1 2 3 4

G

X ⪰ 0, xij = aij , (i , j) ∈ G

G is not chordal. There is no completion for A(G)!
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Feasibility Regions

w.r.t the graph density d = 2|E|/(p(p − 1)) and the mean b:

Erdős–Rényi Chordal
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Conclusion & Ongoing work

Conclusion
Procedure for generating correlation matrices with a given
graph G:

Applicable to any graph structure.

Produces larger correlation values than other algorithms.

Allows the inclusion of additional constraints.

Initial results on graph inference procedures.

G C(G) Ĝ
inference

(ground truth) (corr. with prescribed zeros) (estimated graph)

validation
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Conclusion
Procedure for generating correlation matrices with a given
graph G:

Applicable to any graph structure.

Produces larger correlation values than other algorithms.

Allows the inclusion of additional constraints.

Initial results on graph inference procedures.

Alice Chevaux, Ali Fahkar, Kévin Polisano, Irène Gannaz, and Sophie Achard (Sept.

2025). “Benchmarking Brain Connectivity Graph Inference: A Novel Validation

Approach”. In: 33rd European Signal Processing Conference (EUSIPCO 2025).

Palerme, Italy. url: https://hal.science/hal-04995510
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Conclusion & Ongoing work

Conclusion
Procedure for generating correlation matrices with a given
graph G:

Applicable to any graph structure.

Produces larger correlation values than other algorithms.

Allows the inclusion of additional constraints.

Initial results on graph inference procedures.

Perspective

Higher-dimensional settings.

Theoretical guarantees for the existence and the sampling.

More thorough study of inference procedures.
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Questions?

Thank you!
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Time execution

0.0707 0.1 0.5 0.8
Density of edges in Graph (d)

9

10

11

12

13

14

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Graph Type
Erdos-Renyi
Barabasi-Albert
Watts-Strogatz
chordal
Stochastic Block Model
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Sampling 3× 3 full correlation matrices

C̄k sampled with
unif or

Pourahmadi

↓

Ĉk =


1 xk yk

xk 1 zk

yk zk 1


↓

pk = (xk , yk , zk)
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Comparison for Chordal Graphs
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Benchmark for graph inference

Context
G graph and C ∈ C(G)
Xi ∈ Rp, i = 1, . . . , n iid from N (0,C)

Problem
Inference of G via (Xi)? ↪→ Simulation study

Parameters

100 simulations for each graph

n = 1000 observations

p = 51 nodes

graph structure: chordal

d graph density - varying

b mean constraint on non-zero correlations - varying
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Benchmark for graph inference

(Chevaux, 2025)
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Related works - (1) Diagonal Dominance

Method:

Construct a symmetric matrix C̃

If (i , j) ∈ Ec , then c̃ij = 0

Update rule:

c̃ii ←
∑

j=1,...,p
i ̸=j

|c̃ij |+ random positive perturbation

Gershgorin theorem.

C = diag(C̃)−1/2C̃diag(C̃)−1/2

Drawback: Yields correlation matrices with very low
off-diagonal values.
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Related works - (2) Cholesky decomposition

(Pourahmadi and Wang, 2015) use Cholesky
decomposition and polar transformation, using angles as
random variables.

Correlation matrix is C = LL⊤, where L is:

L =



1 0 0 . . . 0

cos θ21 sin θ21 0 . . . 0

cos θ31 cos θ32 sin θ31 sin θ32 . . . 0
...

...
...

. . .
...

cos θn1 cos θn2 sin θn1 cos θn3 sin θn2 sin θn1 . . .
∏n−1

k=1 sin θnk


.
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Related works - (3) Partial Orthogonalization

Approach: Starts with an initial matrix C (with zeros in
desired pattern (E ′)c).
Process: Iteratively removes additional edges using a
modified Gram-Schmidt-based partial orthogonalization.

Mechanism: Writes C = QQ⊤ and orthogonalizes each
row qi with respect to rows {qj s.t. (i , j) ∈ E and j < i}.
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