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Abstract—Traditional feature extraction and projection tech-
niques, such as Principal Component Analysis, struggle to
adequately represent X-Ray Transmission (XRT) Multi-Energy
(ME) images, limiting the performance of neural networks in
decision-making processes. To address this issue, we propose a
method that approximates the dataset topology by constructing
adjacency graphs using the Uniform Manifold Approximation
and Projection. This approach captures nonlinear correlations
within the data, significantly improving the performance of
machine learning algorithms, particularly in processing Hyper-
spectral Images (HSI) from X-ray transmission spectroscopy.
This technique not only preserves the global structure of the data
but also enhances feature separability, leading to more accurate
and robust classification results.

Index Terms—Hyperspectral imaging, X-ray detection, Topol-
ogy, Manifold learning, Dimensionality reduction, Deep learning,
Feature extraction, Computer Vision.

I. INTRODUCTION

Recent advances in Hyperspectral Images (HSI) analysis
have primarily focused on reflection spectroscopy in the visible
or near-infrared light domains. However, these methods often
underperform in X-ray transmission (XRT) spectroscopy [1]
due to the distinct noise characteristics in this energy do-
main, the low-energy resolution of X-ray detectors, and poor
counting statistics. Traditional methods, such as the Principal
Component Analysis (PCA) [2], and Non-negative Matrix
Factorization (NMF) [3] have shown limitations in charac-
terizing these datasets, which in turn affects the efficiency
of neural networks. Over the past decade, manifold learning
approaches have gained increasing interest for HSI analysis
[4]. These approaches typically aim to project data onto a
low-dimensional space to reveal intrinsic structures, reduce
noise, and improve classification performance. Studies have
demonstrated the effectiveness of manifold-based techniques,
such as t-distributed Stochastic Neighbor Embedding (t-SNE)
[5] combined with Convolutional Neural Networks (CNN)
[6], in enhancing non-linear dimensionality reduction [7] [8]
and classification performance [9], [10]. In this work, we
propose to apply the Uniform Manifold Approximation and
Projection (UMAP) [11] [12] technique to X-ray HSI due to its
ability to more accurately approximate the dataset’s topology,
thus better capturing nonlinear correlations and improving the
performance of subsequent machine learning algorithms.

Our detector consists of an array of semi-conductor active
areas, which we will refer to as “detector pixels” to avoid
confusion with image processing terminology. Each detector
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Fig. 1: Scheme of the experimental setting (left) view from
aside. A top view of the detector is also given (right) to make
the data collection process clearer to the reader.

typically contains 512 detector pixels. The data acquisition
process involves using an X-ray source to illuminate an object
placed on a moving belt, while a detector captures the X-
rays transmitted through the object during its motion (Fig. 1).
During the process, both the source and the detector remain
static. The resulting images have a shape of [H,W,C] where
H represents the time axis, W the detector pixel axis, and C
the energy band axis.

This work focuses on three main objectives:
• Constructing an expressive representation of spectral data,
• Reducing the dimensionality of this representation,
• Evaluating it using deep learning.
In this paper, we investigate the application of UMAP

to XRT HSI data. The proposed methodology details the
approaches and tools used in our analysis. In Section II, we
present the UMAP method and its application in our approach.
Section III provides an overview of our experiments, and
finally, in Section IV, we present our results and insights.

II. METHODOLOGY

A. UMAP:Uniform Manifold Approximation and Projection

UMAP [11] is a powerful technique for dimensionality
reduction and visualization, widely used in data analysis
and visualization [13], [14]. It serves as an alternative to t-
SNE, with the added advantage of preserving both local and
global structures in high-dimensional data. UMAP has gained



popularity due to its ability to retain meaningful relationships
between data points while remaining computationally efficient.

The method is based on manifold learning, which assumes
that data lies on a lower-dimensional manifold embedded
on a high-dimensional space. UMAP seeks to find a lower-
dimensional representation that preserves the intrinsic structure
of data. This is achieved by constructing a fuzzy topological
representation of neighborhood relationships. Using fuzzy set
theory [15], UMAP estimates the probability that data points
are neighbors. The algorithm then minimizes the cross-entropy
between pairwise probabilities in the high-dimensional space
and their counterparts in the low-dimensional embedding,
ensuring that the global structure is effectively preserved.

In our experiments, we used the Parametric UMAP [16]
which employs a Neural Network (NN) to learn a mapping
from the original data to its embedding while optimizing the
same objective as traditional UMAP. This approach enables
fast embedding of new data, as the trained network directly
maps inputs without requiring re-optimization, making it par-
ticularly suitable for large or dynamic datasets.

B. Our approach

Our approach (Fig. 2) consists of the following steps:
1) Fit the UMAP model with images of size [H,W,C]

where H , W and C are respectively the width, height and
number of bands of raw images, with the target dimension
D, where D ≤ C.

2) Project all images using the UMAP model onto the learnt
lower-dimensional space of size D, and reshape them to
their new shape [H,W,D].

3) Feed the projected images into a specific CNN model to
perform various machine learning tasks such as segmen-
tation or regression.

Learn a mapping 
from raw data

Project data 
using UMAP IA model

Fig. 2: Pipeline of our proposed method.

III. NUMERICAL EXPERIMENTS

To evaluate the effectiveness of our proposed methodology,
we assess its performance across three different datasets and
tasks. Through these experiments, we aim to demonstrate
the adaptability and efficiency of our approach for both seg-
mentation and regression challenges in hyperspectral imaging
(HSI). Below, we describe each dataset’s characteristics and
the respective machine learning task.

A. Segmentation of Cigarettes

The Cigarettes dataset was created internally and consists
of HSI images of random luggage, which may contain either
a pack or a carton of cigarettes (positive samples) or none
(negative samples). The objective of this experiment is to
segment cigarettes in the images when they are present. Binary
masks of cigarettes inside the luggage have been carefully
annotated for each relevant image.

Fig. 3: Comparison between raw spectral bands (top row) and
UMAP-projected bands (bottom row).

Acquiring such images requires extensive material setup and
complex procedures, making the process both time-consuming
and costly. Since our focus is to demonstrate the effective-
ness of our preprocessing approach rather than optimizing
the CNN’s performance, we opted for a simplified physical
approximation to expand our training set. The Beer-Lambert
law [17] describes photons attenuation in a medium:

I = I0e
−

∑
µiLi ,

where I is the output intensity, I0 is the input intensity, µi

and Li are respectively the attenuation coefficient and the
medium thickness of i − th material. A direct consequence
of this formulation is that the product of two normalized
images of different materials is equivalent to the normalized
image of both materials superimposed, provided all images
were acquired under the same conditions. We assume that the
detector response is appropriately accounted for by the so-
called white-normalization, commonly used in X-ray imaging.
This normalization, also known as "full-flux normalization"
consists of dividing acquired images by an image taken
without an object. Using this approximation, we generated
synthetic training images by separately capturing luggage and
cigarettes, normalizing them, and summing the results.

The validity of such approach is debatable given the as-
sumptions underlying the Beer-Lambert law. Because of this
specific context, we used this technique to build 320 train
images, and 30 test images. We therefore have 2 test sets. The
first one is composed of 21 real images acquired with manually
placed cigarette cartons inside the luggage. This set is used to
measure the validity of this data generation technique against
real data. The second one has been generated using images of
cartons and luggage that were not used in the training set. This
set to evaluate the performance of the pipeline in the context
of the crude approximation we used. The results for both test
sets will be presented in Section IV.

To reduce the computational cost, the input images were
cropped resized from [16, 1000, 512] to [16, 152, 128] using 2D
average pooling. The trained Parametric UMAP then projected
the downsized images onto a subspace of dimension D = 5
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Fig. 4: The U-Net architecture consists of four downsampling
blocks, each with a Double Convolution followed by Max
Pooling (stride = 2), progressively increasing the number
of filters from 8 to 64. The upsampling blocks include an
Upsampling (scale = 2), concatenation with the corresponding
output, and a Double Convolution to refine features. The final
convolution reduces the output to a single prediction channel.

before feeding them into the CNN. A sample of these bands
is shown in Figure 3.

For the segmentation task, a U-Net model [18] is used with
Binary Cross Entropy as the loss function. The symmetric ar-
chitecture (see Fig. 4) of U-Net includes an encoder, capturing
context by compressing the input into feature maps, and a
decoder, reconstructing the spatial dimensions to produce the
segmented output. UMAP hyperparameters where left to their
default values.

B. Chemical composition of Stones

The Stones dataset consists of individual stone images from
an industrial mine, each composed of two main chemical com-
ponents. Each image includes a binary mask, mass (grams),
and concentration percentages of components A and B, with a
third component C accounting for residual elements (see Fig.
5). The goal is to predict mass and concentrations of A and
B from the HSI and binary mask. C can be derived from A
and B and always has the lowest concentration, therefore it
is not a relevant prediction target. As B concentration domi-
nates, standard error averaging is unsuitable for performance
evaluation, necessitating a more balanced metric. To ensure
a better estimation of performances over all the targets, we
therefore define the Special Harmonic (SH) score:

SH-score = M

∏M
i=1 Si∑M
i=1 Si

(1)

where M is the number of regression targets, and Si the
associated individual score. The SH-score as well as the Si are

Fig. 5: Labels of Stones: each stone has an ID along with
information about its total mass and material concentrations.
The material C is residual elements and always has a very
low concentration.

bounded to [0, 1], where 1 is a perfect result. Si are defined
as follows:

Si = exp

(
−
∑N

j=1 |pij − tij |∑N
j=1 tij

)
, (2)

where pij and tij respectively stands for the prediction and the
target value associated to i-th regression target for j-th sample,
N being the total number of samples. The rationale behind
this formulation of individual score Si is to collapse quickly
in case of poor performances, thus giving a solid estimation
of performance robustness through the SH-score. We decided
to name this score as such because of its close resemblance
with the Harmonic Mean stripped from its cross-products in
the denominator. To avoid any unnecessary complexity in this
work, we decided to use a simple sum of weighted squared
errors as the minimization objective for the stochastic gradient
descent:

Loss =

M∑
i=1

wi

(
pi − ti

ti

)2

(3)

where pi, ti and wi respectively stands for the prediction,
target and weight values associated to i-th regression target.
The wi have been empirically set to {0.5, 5, 5}, corresponding
respectively to the mass, the material A and B targets.

The Stones dataset consists of 1,453 training images and
514 test images. To reduce computational load, 4% of the
dataset is used for Parametric UMAP training, selecting a
balanced subset based on mass and concentrations. The UMAP
hyperparameters are set to a minimum distance of 0.5 and 50
neighbors. The minimum distance controls how closely points
can be placed, while the number of neighbors determines
how UMAP balances local and global structures by defining
the neighborhood size considered when learning the data’s
underlying manifold.

We tested UMAP projections with 10, 20, and 30 bands.
The UMAP-projected data was then fed into a CNN encoder
followed by a decision-making layer adapted to the targets of
the regression task. The CNN encoder is made of four stacks
of customized Inception [19] blocks (Figure 6). For the UMAP



Fig. 6: Customized filters used for the regression task.

method evaluation, all the 514 test images were projected
onto the respective subspace obtained from each fitted UMAP
models. The results were compared to those obtained feeding
the CNN with the 64 raw data bands, a 20-bands PCA, and a
20-bands NMF.

C. Indian Pines dataset

The Indian Pines dataset [20] is a hyperspectral image
dataset captured by the AVIRIS sensor over the Indian Pines
test site in Indiana, USA, in 1992. It consists of a single
145x145 pixel image, with each pixel containing 220 spectral
bands ranging from 0.4 to 2.5 micrometers. The dataset
includes 16 land-cover classes such as corn, soybeans, and
forests, with ground truth labels for a subset of the image.
It is commonly used for testing algorithms in hyperspectral
image analysis, including classification and feature extraction,
due to its high dimensionality and complexity.
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Fig. 7: Multiscale CNN model with two parallel branches
and their respective inputs, the UMAP projection and the raw
image.

For this experiment, we used a multiscale CNN model [21]
with two branches and two inputs (see Fig. 7). Multiscale
feature fusion helped leveraging diverse spatial structures and
rich texture features through extensive neighborhood associ-
ations. As before, data were projected onto a low dimension
representation using UMAP, then fed into the CNN architec-
ture. Results were compared to those obtained using t-SNE
and PCA as data reduction techniques. In all cases, the target
dimension was set to D = 3. UMAP hyperparameters where
left to their default values for this experiment as well.

IV. RESULTS

A. Cigarettes dataset

As mentioned in Section III-A, we tested our approach using
both a real acquisition dataset and an artifical one. We used the
well-known Intersection Over Union (IoU) and Dice Score as
segmentation metrics [22]. Results are summarized in Table I.

Data Input Features Bands IoU Dice Score

Synthetic Dataset
PCA 5 0.41 0.43
NMF 5 0.22 0.33

Our method 5 0.83 0.90
Raw Data 16 0.76 0.86

Real Dataset
PCA 5 0.18 0.30
NMF 5 0.20 0.31

Our method 5 0.32 0.49
Raw Data 16 0.23 0.37

TABLE I: Scores of the Cigarettes the segmentation task.

UMAP significantly outperforms PCA and NMF for this
HSI dataset in both metrics, despite the low number of bands
used. We also observe a significant performance gap between
the synthetic and real datasets, which results from the very
crude approximation we used to compensate for our lack of
data. Even though this outcome was expected, we observe that
the ranking of results remains consistent.

B. Stones dataset

Feature Bands SH-Score SA SB

Our method 10 0.65 0.57 0.97
Our method 20 0.68 0.61 0.97
Our method 30 0.63 0.55 0.97
PCA 20 0.61 0.54 0.97
NMF 20 0.60 0.51 0.97
RAW 64 0.61 0.52 0.97

TABLE II: Scores for the regression task on the Stones dataset.

The results of the experiment described in Section III-B
is summarized in Table II. First, as we said earlier, the
concentration of material B is dominating in our stones. This is
why its associated score SB (eq. (2)) is close to the maximum
possible value, and identical in all our experiments. The score
SA is therefore more relevant to determine the success or
failure of our approach. Second, those results illustrate the
relevance of our definition of the SH-score (eq. (1)) as it
gives values closer to the poorest score than a traditional mean,



thus giving better insights on the global performance of the
pipeline. Last, we see that once again the UMAP approach
gives the best results by a significant margin for a given
number of bands.

C. Indian pines dataset

The results obtained after mixing the raw images and the
UMAP features are shown Fig. 8, illustrating the accuracy
of different strategies across epochs. The UMAP method
outperforms other approaches, including the t-SNE which is
also a manifold learning-based method. In addition to its
accuracy advantage, UMAP also offers computational benefits
compared to t-SNE, which has been too costly in term of
running time and ressources to be applied to the other two
datasets.

Fig. 8: Accuracy evolution during CNN training for Indian
Pines dataset.

V. CONCLUSION

We saw that UMAP-based approaches overperform tradi-
tional linear approaches in all our experiments, like PCA and
NMF. This is a result to be expected for X-ray transmission
spectroscopy, where the energy bands are known to exhibit
substantial non-linear behaviour, much stronger than in opti-
cal domain hyperspectral imaging. By approximating dataset
topology through adjacent graph construction, our approach
captures at least partially non-linear correlations in the data,
enhancing the performance of machine learning models. It
should be noted that the method perform very well as it is,
hyperparameters tuning being necessary for only one experi-
ment. By showing that non-linear correlations between energy
bands have to be accounted for in data processing for this kind
of images, we hope this contribution will stimulate further
researches in toplogical data analysis for improved decision-
making and more accurate data representation in complex
applications.
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