Background Objective

Convolutional neural networks (CNNs) [LeCun1989]:

v/ state-of-the-art performances in computer vision;
X empirical approach, lack of theoretical understanding.

Discrete wavelet transforms [Mallat2009]:

v built on well-established mathematical framework;
v successful in feat. extraction, signal compression and denoising; 2. Assess model’s accuracy with respect to the original architecture, from a

Oscillating patterns very often observed in CNN kernels [Yosinski2014|.
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Figure 1. Left: AlexNet’s first layer after training with ImageNet. Right: selection of dual-tree complex wavelet packet

filters with 3 decomposition stages (real part only).
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Sparsifying Convolutional Layers
with Dual-"Tree Wavelet Packets

Hubert Leterme, hubert.leterme@univ-grenoble-alpes. fr

v Theoretical and empirical sudy of CNN properties for image classification.

Roadmap:

1. Build a sparse model of existing CNN architectures, based on the dual-tree

wavelet packet transform (DT-CWPT) [Bayram2008|.
—> Subset selection among all possible configurations.

qualitative and quantitative point of view.

3. Study properties of the sparse model, such as directional selectivity, sta-
bility with respect to translations, rotations, deformation, etc.

4. Identify ways of optimizing the network.
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Related work

Wavelet scattering networks [Bruna2013; Oyallon2017; Zarka2020)]
CNN-like cascading wavelet convolutions
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=+ Wavelet scattering networks are built from scratch. Our approach aims at
studying existing architectures.

Width, height and number of channels

Separable convolutions

Proposed models Kernel similarity

« Models based on AlexNet and ResNet34.
» First conv. layer replaced by dual-tree wavelet packets.

224, 224, 3 | 224‘ 224, 3 |

Models trained on ImageNet ILSVRC2012.
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Figure 3. Validation error for AlexNet (left) and ResNet34 (right) along training with ImageNet.
J = number of decomposition stages. Dashed gray curves — standard architecture with frozen Figure 5. Characteristic frequencies of DT-CWPT-based kernels, compared to standard architectures.
first layer.
—> The resulting kernels cover the same frequency area as standard AlexNet when

 Listablish near-equivalence between the out-
put of max pooling layers in CNNs and the
modulus of complex wavelet packet coefh-
cients (inspired by [Waldspurger2015]).

 Perform a theoretical and empirical study ot
various types of invariants (shifts, rota-
tions, deformations).

 Further increase sparsity of the models.

« Perform a quantitative evaluation of kernel
similarity:.

 Focus research on deeper layers.
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J =3 (J =2 for Resnet34).
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