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CNNs vs discrete wavelet transforms

Convolutional neural networks (CNNs)*:
Introduction

v state-of-the-art performances in many domains — image
classification, object detection, speech recognition...

X very resource-intensive;

X empirical approach; lack of mathematical understanding.

1LeCun2015
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Introduction

CNNs vs discrete wavelet transforms

Convolutional neural networks (CNNs)*:

v state-of-the-art performances in many domains — image
classification, object detection, speech recognition...

X very resource-intensive;

X empirical approach; lack of mathematical understanding.
Discrete wavelet transforms?:

v built on well-established mathematical framework;

v very efficient in tasks such as signal compression and denoising;

X not widely used for image classification.

Oscillating patterns very often observed in CNN kernels®,

1LeCun2015
2Mallat2009
3Yosinski2014
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Introduction

CNNs vs discrete wavelet transforms
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AlexNet* filters (first layer) after training with ImageNet

4Krizhevsky2012
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Objectives

Introduction

Main objective:

v perform a theoretical study of CNN properties for image classification.
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Objectives

Introduction

Main objective:

v perform a theoretical study of CNN properties for image classification.

What this work is NOT about (at least not as primary objective):
X increase performance of CNNs;

X decrease training complexity.
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Roadmap

B Build a sparse model of existing CNN architectures, based on the
Introduction dual-tree wavelet packet transform (DT-CWPT).%®

5Kingsbury2001
5Bayram2008
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Introduction

Roadmap

B Build a sparse model of existing CNN architectures, based on the
dual-tree wavelet packet transform (DT-CWPT).%®
—> Subset selection among all possible configurations.
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Roadmap

B Build a sparse model of existing CNN architectures, based on the
dual-tree wavelet packet transform (DT-CWPT).%®
—> Subset selection among all possible configurations.
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[ Assess model’s accuracy with respect to the original architecture.
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Roadmap

B Build a sparse model of existing CNN architectures, based on the
Introduction dual-tree wavelet packet transform (DT-CWPT).%®
—> Subset selection among all possible configurations.

e ~

An, Anet Learning space
Learning curve 3w proposed model
proposed model

L _ __Learning space
earning curve standard model

standard model | 8,
\ i On+1 @

[ Assess model’s accuracy with respect to the original architecture.

Study properties of the sparse model, such as directional selectivity,
stability with respect to translations, rotations, deformation, etc.

5Kingsbury2001

SBayram2008
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Standard AlexNet

224,224, 3

Conv (11, 11) 14

56, 56, 64

ReLU + MaxPool |2
Proposed
models 28, 28,64
‘ Conv (5, 5) ‘

28, 28, 192

ReLU + MaxPool |2

14, 14,192

14, 14,192 x3

RelU

14, 14, 256

‘ MaxPool |2 ‘

6, 6,256

Flatten

9216

Fully-connected

4096 x2

RelU

4096

Fully-connected

1000
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Standard AlexNet

Conv (11,11) 14

ReLU + MaxPool |2
Proposed
models 28, 28, 64
‘ Conv (5, 5) ‘
28, 28,192

RelLU + MaxPool |2

14,14,192

14,114,192

RelU

14,14, 256

‘ MaxPool |2 ‘
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Flatten

9216

Fully-connected

4096 x2
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4096

Fully-connected

1000
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First convolution layer in standard AlexNet
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First convolution layer in standard AlexNet

Proposed
models

242085
Conv (11, 11) 14

55.56,61

RelU + MaxPool L2

e
com 59
B

ot~ aool 12

oo 59
ol
|
MaxPool |2
Faten
ome |
e
som]
B
o
e

(width, height and
224,224,3 number of channels)

Conv (11

,11) 14

56, 56, 64

AlexNet first layer
23.3K params.
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First convolution layer in standard AlexNet

a4 mo4q ~ | (Width, height and
004 224,3 g
A 224,22 umber of channels)

models

=

Conv (11, 11) 14
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64 output channels
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o | |

1o | AlexNet first layer
23.3K params.

10/23



Model with 2 levels of dual-tree decomposition

(width, height and 224 224, 3

Proposed 224,224,3 | 1imber of channels)

models

Duplicate

224, 224,12

BT
Conv (11, 11) 14
56.56,64

Dual-tree WPT |2
ReLU + MaxPool 12

20,2004 | 112, 112,48

Conv (5, 5)

20,28, 152 | Conv (11, 11) 14 ‘ Dual-tree WPT |2
‘Ti”,;ﬁ”f”“' 12 — 56, 56, 192
Com(5,9) ‘ Recombine ‘
] Fe
RelU
wam] 56, 56, 192 l
MaxPool 12 ‘ Conv (1, 1) ‘
5.2 | 56, 56, 64
Fatten 56, 56, 64 l
o216
Fulyconnected| |
4098 | x2
RelU
e :
Fully-connected
1000 | AlexNet first layer Replacement with dual-tree WPT
23.3K params. (2 levels of decomposition)

12.4K params.
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Proposed
models

Model with 2 levels of dual-tree decomposition

i
Comv (11, 11) 14
s5.55.04
RelU + MaxPool 12
25,28,04
Conv (5, 5)
w2
| RoLU - MaxPool 12
e 102
Conv (3, 3)
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14,140,258

MaxPool 12
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Fully-connected
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RelU
swo]
Fully-connected
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224,224,3

Conv (11

56, 56, 64

(width, height and
number of channels)

224,224, 3

Duplicate

224, 224,12

Separable convolutions ——————¢ Dual-tree WPT 12
N

,11) 14 ‘

linear operations

NI
\112,112,48

N Dual-tree WPT 12

56, 56, 192
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Channelwise

56, 56, 192

Freely-trained Conv (1, 1) ‘
convolution layers

AlexNet first layer
23.3K params.

56, 56, 64 i

Replacement with dual-tree WPT
(2 levels of decomposition)

12.4K params.
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Model with 2 levels of dual-tree decomposition

S 224,224, 3 l
models Duplicate
224, 224,12 l
Dual-tree WPT |2
112, 112, 48 l

Dual-tree WPT |2
[

56, 56, 192
v

Recombine
EEEEEERA Gonv (1, 1)
96 complex-valued feature maps 56,56, 64 l
\
|
AlexNet first layer Replacement with dual-tree WPT
23.3K params. (2 levels of decomposition)

12.4K params.
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Proposed
models

Model with 2 levels of dual-tree decomposition

Conv (

)
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64 output channels

AlexNet first layer
23.3K params

224,224, 3 l
Duplicate

224, 224,12 l
Dual-tree WPT |2

o 112.48 |

112, 112, 48 '
Dual-tree WPT |2

56, 56, 192 l

Recombine

56, 56, 192 l

Conv (1, 1)

G|

Replacement with dual-tree WPT
(2 levels of decomposition)
12.4K params
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Kernel visualization

Is the model with 2 levels of dual-tree decomposition satisfactory?

Proposed
models
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Kernel visualization

Is the model with 2 levels of dual-tree decomposition satisfactory?

m Kernel visualization in the spatial domain:
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AlexNet first layer Replacement with dual-tree WPT
(2 levels of decomposition)

—> Too small spatial extent (or too wide frequency extent), compared to
standard AlexNet.
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Kernel visualization

Is the model with 2 levels of dual-tree decomposition satisfactory?

m Kernel visualization in the frequency domain:

Proposed
models
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AlexNet first layer Replacement with dual-tree WPT

(2 levels of decomposition)

—> Too small spatial extent (or too wide frequency extent), compared to
standard AlexNet.
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Kernel visualization

Is the model with 2 levels of dual-tree decomposition satisfactory?

m Kernel visualization in the frequency domain:

Proposed
models

AlexNet firs

-
-

layer Replacement with dual-tree WPT
(2 levels of decomposition)

—> Too small spatial extent (or too wide frequency extent), compared to
standard AlexNet.

—> ldea: add one extra level of decomposition.
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Model with 3 levels of dual-tree decomposition

(width, height and 224,224,3 l
Proposed 224, 2243 | 1imber of channels)
models Duplicate
T 224, 224,12 l
Conv (11, 11) 14
56,56,64 Dual-tree WPT |2
ReLU + MaxPool 12
28,28.64 | 112,112, 48 l
Conv (5.5)
25,28, 102 | Conv (11, 11) 14 ‘ Dual-tree WPT |2
ReLU + MaxPool 12
\—l—l‘wm ﬁ 56, 56, 192 l
Cone (6.3) + Dual-tree WPT
o e "
(00 56, 56, 768 l
MaxPool 12 Recombine + Select
56,25 | 56, 56, 64
Flatten 56, 56, 384 l
ozie |
Fuly-connected | Conv (1, 1)
sl “ 56, 56, 64 l
RelU
4006
Fully-connected
oo | AlexNet first layer Replacement with dual-tree WPT

(3 levels of decomposition)
49.2K params. (6.1K under add. constraints)

23.3K params.
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Proposed
models

Model with 3 levels of dual-tree decomposition

Gom 11,194
e
R o 12
g,
25,29, 152 |
ReLU + MaxPool 12
e
ey
Maspon 12
oomo]
Fien

oz

Fullyconnected

400 |

RelU
Futy oot
|

(width, height and 204,204,3 l

224,224.3 | pymber of channels)

Duplicate

224, 224,12 l

/ Dual-tree WPT |2
Decimated

: < 112,112,48 l
convolutions .
Conv (11, 11) 14 ‘ \+ Dual-tree WPT |2

ﬁ 56, 56, 192 l

Undecimated _

N —+  Dual-tree WPT
convolutions

56, 56, 768 l

Recombine + Select ‘
56, 56, 64

56, 56, 384 J’
Conv (1, 1)

56, 56, 64

AlexNet first layer Replacement with dual-tree WPT
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Model with 3 levels of dual-tree decomposition

224,224, 3
v

Duplicate

Proposed
models

224, 224,12
v
Dual-tree WPT |2
112, 112,48

Dual-tree WPT |2

Recombine + Select

'

Conv (1, 1)

56, 56, 64

Replacement with dual-tree WPT
(3 levels of decomposition)

9.2K params. (6.1K under add. constraints)
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192 complex-valued feature maps
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Proposed
models

Model with 3 levels of dual-tree decomposition
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v
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224,224, 12
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112,112, 48

v

Dual-tree WPT |2

92
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(8 levels of decomposition)

49.2K params. (6.1K under add. constraints)
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Kernel visualization

Which choice of decomposition depth?

Proposed
models

14/23



Proposed
models

Kernel visualization

Which choice of decomposition depth?

m Kernel visualization in the spatial domain:

AlexNet first layer
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(2 levels of decomposition)
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Replacement with dual-tree WPT
(3 levels of decomposition)
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Proposed
models

Kernel visualization

Which choice of decomposition depth?

m Kernel visualization in the frequency domain:

AlexNet first layer

Replacement with dual-tree WPT
(2 levels of decomposition)

Replacement with dual-tree WPT

(3 levels of decomposition)
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Proposed
models

Kernel visualization

Which choice of decomposition depth?

m Kernel visualization in the frequency domain:

AlexNet first layer

Replacement with dual-tree WPT
(2 levels of decomposition)

Replacement with dual-tree WPT

(3 levels of decomposition)

— A model with 3 levels of decomposition seems more relevant, in both
spatial and frequency domains.
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Proposed
models

Kernel visualization

Which choice of decomposition depth?

m Kernel visualization in the frequency domain:

AlexNet first layer

Replacement with dual-tree WPT
(2 levels of decomposition)

Replacement with dual-tree WPT

(3 levels of decomposition)

— A model with 3 levels of decomposition seems more relevant, in both
spatial and frequency domains.

—> Can we find a measure of similarity between kernels?

14 /23
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Similarity between convolution kernels

Example with standard AlexNet:
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Spatial representation Frequential representation

Characteristic frequencies obtained by using the 2D discrete-time Fourier
transform as well as the structure tensor’.

7 Jahne2004
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Similarity between convolution kernels

Example with standard AlexNet:
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Characteristic frequencies obtained by using the 2D discrete-time Fourier
transform as well as the structure tensor’.

7 Jahne2004



Similarity between convolution kernels
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17/23



Similarity between convolution kernels
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Similarity between convolution kernels
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Similarity between convolution kernels
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Similarity between convolution kernels
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—> In addition to being more localized in the Fourier domain, the model with
3 levels of decomposition reaches lower frequencies, that we also find in
the standard model.
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I

In addition to being more localized in the Fourier domain, the model with
3 levels of decomposition reaches lower frequencies, that we also find in
the standard model.

— This confirms our intuition about the choice for a “best" model.
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Performance of the models

Another way of assessing the accuracy of our models is to compare their
performances with respect to standard CNNs.

Accuracy of
the models
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Performance of the models

Another way of assessing the accuracy of our models is to compare their
performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

Accuracy of 1.0 —+ Dual-tree,j =2
the models ) —< Dualtree,j=3
0.9 Y —s— Baseline (std model)
Y\ —-=+- Untrained layer (std model)

Top-1 error
o
~
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Number of epochs

Validation error along training
(J denotes the number of decomposition stages)
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Accuracy of 1.0 —+ Dual-tree,j =2
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0.9 Y —s— Baseline (std model)
Y\ —-=+- Untrained layer (std model)
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Validation error along training
(J denotes the number of decomposition stages)

= Our models reach the performance of standard AlexNet.
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Performance of the models

Another way of assessing the accuracy of our models is to compare their
performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.
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Accuracy of —— Dual-tree, J=2
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Validation error along training — focus on the first epochs
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= Our models reach the performance of standard AlexNet.
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Performance of the models

Another way of assessing the accuracy of our models is to compare their
performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

1.00
Accuracy of —— Dual-tree, J=2

the models N
0.95 —< Dual-tree, /=3
0.90 . —s— Baseline (std model)
. AN -+~ Untrained layer (std model)

5 0.85

£

L

2080

=S

£ 0.75
0.70
0.65

0.60

Number of epochs

Validation error along training — focus on the first epochs
(J denotes the number of decomposition stages)

= Our models reach the performance of standard AlexNet.
—> Validation error decreases more rapidly with J = 3. This may be due to

the reduced model complexity, compared to Standard AlexNet.
18/23
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the
modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.
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properties
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Experimental
properties

Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.

Let's see how this property is transferred to the output of the network.
CW“}.“M m Forward-propagation of 8 shifted versions of an image;
ReLU + MaxPool |2
Conv (5, 5)
o100
o (3,9) ‘
ReLU J

14,18,256 |
MaxPool 12
6.6.25
Flatien
azie |
Fully-connected | |
Tl
ReLU |
s0s6 |
Fully-connected |
o0
Softmax

o]
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.

cwu}.nua m Forward-propagation of 8 shifted versions of an image;
I:Ejb;m . m Kulback-Leibler divergence between softmax of outputs;
Experimental Conv (5, 5)
properties 28,28, 192
conv(3,3) ‘
14,1419 | x3
ReLU J

14,18,256 |
MaxPool 12
6.6.25
Flatien
azie |
Fully-connected | |
|
ReLU |
s0s6 |
Fully-connected |
o0
Softmax

o]
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.

sz;j:i‘l.”,“ m Forward-propagation of 8 shifted versions of an image;

Aol vnFool 12 m Kulback-Leibler divergence between softmax of outputs;
E— 23‘2:;{5 5 m Average values computed over a subset of ImageNet (50,000
properties 28,28, 192 images) .

v
cowed| |
o102 [

ReLU J

14,18,256 |
MaxPool 12
6.6.25
Flatien
azie |
Fully-connected | |
Tl
ReLU |
s0s6 |
Fully-connected |
o0
Softmax

o]
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.

ch},nm m Forward-propagation of 8 shifted versions of an image;
I:Ejb;m . m Kulback-Leibler divergence between softmax of outputs;
E— s [ ] Average values computed over a subset of ImageNet (50,000
properties 28,28, 192 |mages) .
ReLU + MaxPool 12 . . . . . .
o] m Also included: network implementing classical WPT, which is
Cov(3.3)] | NOT shift-invariant.
gy | 0.10
MaxPool |2 0.08
6.6,256 o
Fiaten 2
oaey £0.06
Fully-connected o
] Lﬂ 2
Reu 2 0.04
4096 c
Fu\ly~w'nnecled‘ b —y— Classical WPT
= 0.02 —— Dual-tree, ) =2
—< Dual-tree, /=3
0.00 «— Baseline (std model)

0 1 2 3 4 5 6 7 8
Shift along x axis (nb of pixels)
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.

02218 . . . .
ch},nm m Forward-propagation of 8 shifted versions of an image;
% m Kulback-Leibler divergence between softmax of outputs;
E— s [ ] Average values computed over a subset of ImageNet (50,000
properties 28,28, 192 |mages) .
ReLU + MaxPool 12 . . . . . .
o] m Also included: network implementing classical WPT, which is
Cov(3.3)] | NOT shift-invariant.
v Lo
gy | 0.10
wia o]
MaxPool |2
6.6,256 o 0.08
Fiaten g
ome, £0.06
Fully-connected v
] Lﬂ 2
ReLU < 0.04
4096 c
Fu\ly~w'nnecled‘ b —y— Classical WPT
= 0.02 —t Dual-tree, /=2
—< Dual-tree, /=3
0.00 «— Baseline (std model)
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the

modulus of complex coefficients.
Let's see how this property is transferred to the output of the network.

ch},nm m Forward-propagation of 8 shifted versions of an image;
% m Kulback-Leibler divergence between softmax of outputs;
E— s [ ] Average values computed over a subset of ImageNet (50,000
properties 28,28, 192 |mages) .
ReLU + MaxPool 12 . . . . . .
o] m Also included: network implementing classical WPT, which is
Cov(3.3)] | NOT shift-invariant.
( 010
ReLU N
w100 | Better shift-stability with J = 3!
MaxPool |2
6.6,256 o 0.08
Fiaten g
s2ue| £0.06
Eup—— v
] Lﬂ 2
ReLU < 0.04
4096 c
Fu\ly~w'nnecled‘ b —y— Classical WPT
= 0.02 —t Dual-tree, /=2
—< Dual-tree, /=3
0.00 +— Baseline (std model)

0 1 2 3 4 5 6 7 8
Shift along y axis (nb of pixels)
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Conclusion and future work

— On-going work to establish near equivalence between standard CNNs and
handcrafted architectures for which theoretical properties are guaranteed.
— Similar study performed on ResNet architecture.
— First step toward a more complete understanding of CNNs for computer
vision.
Conclusion
and future
work

Future work

m Consolidate analysis: other types of invariants, etc.
= Quantitative evaluation of kernel similarity.

m Focus research on deeper layers.
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Thank you for your attention!

Introduction
Proposed models
Accuracy of the models

Conclusion Bl Experimental properties
and future
work

Conclusion and future work

a. Sparse models b. Accuracy of
of standard CNNs the models

c. Properties of
the models

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir, as well as the ANR grant AVENUE (ANR-18-CE23-0011).
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The standard wavelet packet transform (WPT)

m h and g € R%, pair of conjugate mirror filters (CMFs)
m separable 2D filter bank

GO=heh GVW=hgg GP=goh CO=gxaq.

Input image: X(()O) =X

Successive decompositions, for each j € {1..J}:

Wi {0..3}, X% = (x}ﬁ)l *m) 12,

{X(Jk)} is a representation of X in a wavelet packet basis.
kefo..4l-1}

m J /' = spatial resolution \, and frequency resolution .
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The standard wavelet packet transform (WPT)

Example with 2 levels of decomposition

D,(0)

iy,(2) (3 D,(6)

D,® (9 p,(12) p,13)

D,(10) 3y D,(14)  D,(15)
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The dual-tree complex wavelet packet transform (DT-CWPT)

Properties of standard WPT:

v sparse signal representation and vertical / horizontal feature
cground discrimination;

n X lack of shift invariance and a poor directional selectivity.
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The dual-tree complex wavelet packet transform (DT-CWPT)

Properties of standard WPT:

v sparse signal representation and vertical / horizontal feature
B nd discrimination;

X lack of shift invariance and a poor directional selectivity.

Workaround: decompose images in a frame of complex oriented waveforms
with minimal redundancy.

m Four WPT decompositions {XE:)J}, {XS)J}, {X(ck)J} {XEik,)J} with
suitable filter banks;

m Dual-tree coefficients {Zf(k)} and {Zj\(k)} :
ke{o.A4J—1}

7" 1 -1\ (X%, Lt X%
= ’ I~ ’ .

AN 11 ) \xYP, 1-1) \x¥,

z,®

= 6 orientations, and near shift-invariance for and

Z/N
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The dual-tree complex wavelet packet transform (DT-CWPT)

Example with 2 levels of decomposition

Backgi
on dis

) %)

5/7



Related work — wavelet scattering networks

e Image representation based on the continuous wavelet transform, involving
convolutions and non-linearities as in CNNs.?

8Bruna2013
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Related work — wavelet scattering networks

Image representation based on the continuous wavelet transform, involving
convolutions and non-linearities as in CNNs.®

—>| Invariance properties

" Wavelet scattering |
| Wavelet transforms li
| standard cNNs }j

networks

Other properties

Our models

= Our contribution: theoretical model imitating the behavior of a standard
CNN, with invariance properties as in wavelet scattering networks.

8Bruna2013
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Why the dual-tree complex wavelet packet transform?

Similitudes with the Gabor transform:
m complex, multiscale and oriented filters;
Related m well-localized in the Fourier domain;

n m sparse image representations.
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Why the dual-tree complex wavelet packet transform?

Similitudes with the Gabor transform:
m complex, multiscale and oriented filters;
Related work m well-localized in the Fourier domain;

n m sparse image representations.

Differences with the Gabor transform:

m specifically designed for the discrete world, with perfect reconstruction
guarantees and minimal redundancy;

m decimated convolutions, which is consistent with the CNN approach;

m sparse description — a single pair of out-of-phase 1D vectors is sufficient
to describe the whole process.
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