Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

Sparsifying Convolutional Layers with Dual-Tree Wavelet Packets

Hubert Leterme Kévin Polisano Valérie Perrier Karteek Alahari

Laboratoire Jean Kuntzmann

Université Grenoble Alpes

ORASIS 2021

Contents

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

1 Introduction

2 Proposed models

3 Accuracy of the models

4 Experimental properties

Contents

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

1 Introduction

2 Proposed model

3 Accuracy of the models

4 Experimental properties

CNNs vs discrete wavelet transforms

Introduction

- Proposed models
- Accuracy of the models
- Experiment: properties
- Conclusion and future work

Convolutional neural networks (CNNs)¹:

- ✓ state-of-the-art performances in many domains image classification, object detection, speech recognition...
- X very resource-intensive;
- **X** empirical approach; lack of mathematical understanding.

¹LeCun2015

CNNs vs discrete wavelet transforms

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Conclusion and future work

Convolutional neural networks (CNNs)¹:

- ✓ state-of-the-art performances in many domains image classification, object detection, speech recognition...
- X very resource-intensive;
- **X** empirical approach; lack of mathematical understanding.

Discrete wavelet transforms²:

- ✓ built on well-established mathematical framework;
- ✓ very efficient in tasks such as signal compression and denoising;
- **X** not widely used for image classification.

Oscillating patterns very often observed in CNN kernels³.

¹LeCun2015

²Mallat2009

³Yosinski2014

Introduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

AlexNet⁴ filters (first layer) after training with ImageNet

⁴Krizhevsky2012

Objectives

Introduction

Proposed models

Accuracy of the models

Experiment: properties

Conclusion and future work

Main objective:

✓ perform a theoretical study of CNN properties for image classification.

Objectives

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

Main objective:

 \checkmark perform a theoretical study of CNN properties for image classification.

What this work is NOT about (at least not as primary objective):

- X increase performance of CNNs;
- X decrease training complexity.

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work **Build a sparse model** of existing CNN architectures, based on the **dual-tree wavelet packet transform** (DT-CWPT).^{5,6}

⁵Kingsbury2001 ⁶Bayram2008

Introduction

Proposed models

Accuracy of the models

Experimenta properties

- Build a sparse model of existing CNN architectures, based on the dual-tree wavelet packet transform (DT-CWPT).^{5,6}
 - \implies Subset selection among all possible configurations.

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

- **Build a sparse model** of existing CNN architectures, based on the **dual-tree wavelet packet transform** (DT-CWPT).^{5,6}
 - \implies Subset selection among all possible configurations.

5 Assess model's accuracy with respect to the original architecture.

⁵Kingsbury2001 ⁶Bayram2008

Introduction

Proposed models

Accuracy of the models

Experimenta properties

- Build a sparse model of existing CNN architectures, based on the dual-tree wavelet packet transform (DT-CWPT).^{5,6}
 - \implies Subset selection among all possible configurations.

- **5** Assess model's accuracy with respect to the original architecture.
- **Study properties of the sparse model**, such as directional selectivity, stability with respect to translations, rotations, deformation, etc.

⁵Kingsbury2001

⁶Bayram2008

Contents

Introduction

Proposed models

Accuracy of the models

Experiment: properties

Conclusion and future work

1 Introductio

2 Proposed models

- 3 Accuracy of the models
- 4 Experimental properties
- 5 Conclusion and future work

Standard AlexNet

Proposed models

Accuracy of the models

Experiment properties

Standard AlexNet

Proposed models

Accuracy of the models

Experiment properties

First convolution layer in standard AlexNet

Introduction

Proposed models

Accuracy of the models

Experiment properties

First convolution layer in standard AlexNet

Proposed models

Accuracy of the models

Experiment properties

First convolution layer in standard AlexNet

Introduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

AlexNet first layer 23.3K params.

64 output channels

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

12.4K params.

Introduction

Proposed models

Accuracy of the models

Experiment properties

ntroductior

Proposed models

Accuracy of the models

Experiment: properties

Conclusion and future work

96 complex-valued feature maps

AlexNet first layer 23.3K params. Replacement with dual-tree WPT (2 levels of decomposition) 12.4K params.

Dual-tree WPT ⊥2

Dual-tree WPT 12 56, 56, 192 Recombine 56, 56, 192

112, 112, 48

56, 56, 64

Introduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

AlexNet first layer 23.3K params.

Replacement with dual-tree WPT (2 levels of decomposition) 12.4K params.

Is the model with 2 levels of dual-tree decomposition satisfactory?

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Is the model with 2 levels of dual-tree decomposition satisfactory?

Proposed models

Accuracy of the models

Experiment properties

Conclusior and future work

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition)

 \implies Too small spatial extent (or too wide frequency extent), compared to standard AlexNet.

Is the model with 2 levels of dual-tree decomposition satisfactory?

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition)

➡ Too small spatial extent (or too wide frequency extent), compared to standard AlexNet.

Is the model with 2 levels of dual-tree decomposition satisfactory?

Proposed models

Accuracy of the models

Experiment properties

Conclusior and future work

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition)

- ⇒ Too small spatial extent (or too wide frequency extent), compared to standard AlexNet.
- ⇒ Idea: add one extra level of decomposition.

Proposed models

Duplicate

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

49.2K params. (6.1K under add. constraints)

Introduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

224, 224, 3
Conv (11, 11) 14
56, 56, 64
ReLU + MaxPool 12
28, 28, 64
Conv (5, 5)
28, 28, 192
ReLU + MaxPool 12
14, 14, 192
Conv (3, 3)
14, 14, 192 - × 3
ReLU
14, 14, 256
MaxPool 12
6, 6, 256
Flatten
9 216
Fully-connected
4 096 - × 2
ReLU
4 096
Fully-connected
1 000

Replacement with dual-tree WPT (3 levels of decomposition) 9.2K params. (6.1K under add. constraints)

Introduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

Replacement with dual-tree WPT (3 levels of decomposition) 49.2K params. (6.1K under add. constraints)

Which choice of decomposition depth?

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Which choice of decomposition depth?

Kernel visualization in the spatial domain:

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

Constant of the local division of the local	•	+				
-	-					1
1	1	1		1		-
	-				٢	
-	a.				δ.	11
	10	N	1	11	Γ.	N
-		•		1		1
	L			ł		

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition)

Replacement with dual-tree WPT (3 levels of decomposition)

14 / 23

Which choice of decomposition depth?

Kernel visualization in the frequency domain:

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

: *	<i>:</i>	••	•
1.1	\$	¥ 🔶	÷ 3
** ***		° • •	+:
十 香田	e		
1 - 216-	s 🖉	٠	
• • •	et 14	• • • • • •	🍨 -*
10	<u>ه</u>	:	·* *•
	: +	1. Sec. 1. Sec	

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition) Replacement with dual-tree WPT (3 levels of decomposition)

Which choice of decomposition depth?

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

AlexNet first layer

Replacement with dual-tree WPT (2 levels of decomposition) Replacement with dual-tree WPT (3 levels of decomposition)

⇒ A model with 3 levels of decomposition seems more relevant, in both spatial and frequency domains.

Which choice of decomposition depth?

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work • Kernel visualization in the frequency domain:

(2 levels of decomposition)

Replacement with dual-tree WPT (3 levels of decomposition)

- ⇒ A model with 3 levels of decomposition seems more relevant, in both spatial and frequency domains.
- \implies Can we find a measure of similarity between kernels?

Contents

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

1 Introduction

Proposed models

3 Accuracy of the models

- 4 Experimental properties
- 5 Conclusion and future work

Example with standard AlexNet:

Introduction

Proposed models

Accuracy of the models

Experiment: properties

Conclusion and future work

Spatial representation

Frequential representation

Characteristic frequencies obtained by using the 2D discrete-time Fourier transform as well as the structure ${\sf tensor}^7.$

⁷ Jahne2004

Example with standard AlexNet:

Introductio

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

Spatial representation

Frequential representation

Characteristic frequencies obtained by using the 2D discrete-time Fourier transform as well as the structure ${\sf tensor}^7.$

⁷ Jahne2004

ntroduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

-	1						2
1	1						
		\mathbf{N}	1				1
		•		-		$\langle \rangle$	1
		-					
_	_	_	_	_	_	_	_

	3	× .		-			1
3			- Area		+		1
**	**	۰.	- 44 -		• •	-	
+		1	-		N		
1	nie-	- 5 -		+	- 19-		**
	• •	• *	۰.	• •		•	•*
1	0	•				• *	٠.
	•••	1		-	8		

ntroductior

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

ntroduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

ntroductior

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

ntroductior

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

(J denotes the number of decomposition stages)

⇒ In addition to being more localized in the Fourier domain, the model with 3 levels of decomposition reaches lower frequencies, that we also find in the standard model.

ntroductior

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

(*J* denotes the number of decomposition stages)

- $\implies \mbox{ In addition to being more localized in the Fourier domain, the model with 3 levels of decomposition reaches lower frequencies, that we also find in the standard model.}$
 - This confirms our intuition about the choice for a "best" model.

Another way of assessing the accuracy of our models is to compare their performances with respect to standard CNNs.

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Another way of assessing the accuracy of our models is to compare their performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

(J denotes the number of decomposition stages)

Introduction

Proposed models

Accuracy of the models

Experiment properties

Another way of assessing the accuracy of our models is to compare their performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

(J denotes the number of decomposition stages)

Our models reach the performance of standard AlexNet.

Introductior

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

 \implies

Another way of assessing the accuracy of our models is to compare their performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

Validation error along training – focus on the first epochs (J denotes the number of decomposition stages)

Our models reach the performance of standard AlexNet.

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Another way of assessing the accuracy of our models is to compare their performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

Validation error along training – focus on the first epochs (*J* denotes the number of decomposition stages)

- \implies Our models reach the performance of standard AlexNet.
- \implies Validation error decreases more rapidly with J = 3. This may be due to the reduced model complexity, compared to Standard AlexNet.

Introduction

Proposed models

Accuracy of the models

Experiment. properties

Contents

Introduction

Proposed models

Accuracy of the models

Experimental properties

Conclusion and future work

1 Introduction

2 Proposed models

3 Accuracy of the models

4 Experimental properties

Let's see how this property is transferred to the output of the network.

Introductio

Proposed models

Accuracy of the models

Experimental properties

Let's see how this property is transferred to the output of the network.

Experimental

properties

Forward-propagation of 8 shifted versions of an image;

Let's see how this property is transferred to the output of the network.

224, 224, 3 Conv (11, 11) 14 56 56 64 ReLU + MaxPool 12 28, 28, 64 Conv (5, 5) 28, 28, 192 ReLU + MaxPool .1.2 14, 14, 192 Conv (3, 3) 14, 14, 192 ReLU 14.14.256 MaxPool 12 6.6.256 Flatten 9 2 1 6 Fully-connected 4 096 ×2 BeLU 4 096 Fully-connected Softmax 1 000

Experimental

properties

- Forward-propagation of 8 shifted versions of an image;
- Kulback-Leibler divergence between softmax of outputs;

Let's see how this property is transferred to the output of the network.

224, 224, 3 Conv (11, 11) 14 56 56 64 ReLU + MaxPool 12 28, 28, 64 Conv (5, 5) 28, 28, 192 ReLU + MaxPool .1.2 14, 14, 192 Conv (3, 3) 14, 14, 192 ReLU 14.14.256 MaxPool 12 6, 6, 256 Flatten 9 2 1 6 Fully-connected 4 096 ×2 BeLU 4 096 Fully-connected Softmax 1 000

Experimental

properties

- Forward-propagation of 8 shifted versions of an image;
- Kulback-Leibler divergence between softmax of outputs;
- Average values computed **over a subset of ImageNet** (50,000 images).

Let's see how this property is transferred to the output of the network.

- Forward-propagation of 8 shifted versions of an image;
- Kulback-Leibler divergence between softmax of outputs;
- Average values computed over a subset of ImageNet (50,000 images).
- Also included: network implementing classical WPT, which is NOT shift-invariant.

Introductio

Proposed nodels

224, 224, 3

28, 28, 192 ReLU + MaxPool .1.2

14, 14, 192

6, 6, 256 Flatten 9 216 Fully-connected 4 096

Conv (11, 11) ↓4

ReLU + MaxPool 12

Conv (5, 5)

Conv (3, 3)

ReLU 14, 14, 256 MaxPool 12

ReLU

Fully-connected

Softmax

1 000

х3

x 2

Accuracy of the models

Experimental properties

Let's see how this property is transferred to the output of the network.

- Forward-propagation of 8 shifted versions of an image;
- Kulback-Leibler divergence between softmax of outputs;
- Average values computed over a subset of ImageNet (50,000 images).
- Also included: network implementing classical WPT, which is NOT shift-invariant.

Introductio

Proposed nodels

224, 224, 3

28, 28, 192 ReLU + MaxPool .1.2

14, 14, 192

6, 6, 256 Flatten 9 216 Fully-connected 4 096

Conv (11, 11) ↓4

ReLU + MaxPool 12

Conv (5, 5)

Conv (3, 3)

ReLU 14, 14, 256 MaxPool 12

ReLU

Fully-connected

Softmax

1 000

х3

x 2

Accuracy of the models

Experimental properties

Let's see how this property is transferred to the output of the network.

- Forward-propagation of 8 shifted versions of an image;
- Kulback-Leibler divergence between softmax of outputs;
- Average values computed over a subset of ImageNet (50,000 images).
- Also included: network implementing classical WPT, which is NOT shift-invariant.

ntroduction

Proposed nodels

224, 224, 3

28, 28, 192 ReLU + MaxPool .1.2

14, 14, 192

14, 14, 256 MaxPool 12

6, 6, 256 Flatten 9 216 Fully-connected 4 096

Conv (11, 11) ↓4

ReLU + MaxPool 12

Conv (5, 5)

Conv (3, 3)

ReLU

ReLU

Fully-connected

Softmax

1 000

х3

x 2

Accuracy of the models

Experimental properties

Contents

Introduction

Proposed models

Accuracy of the models

Experimenta properties

Conclusion and future work

1 Introduction

2 Proposed mode

3 Accuracy of the models

4 Experimental properties

ntroduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work On-going work to establish near equivalence between standard CNNs and handcrafted architectures for which theoretical properties are guaranteed.

Conclusion and future work

Introduction

- Proposed models
- Accuracy of the models
- Experiment properties
- Conclusion and future work

- \Rightarrow On-going work to establish near equivalence between standard CNNs and handcrafted architectures for which theoretical properties are guaranteed.
- \implies Similar study performed on ResNet architecture.

Conclusion and future work

Introduction

- Proposed models
- Accuracy of the models
- Experiment properties
- Conclusion and future work

- ⇒ On-going work to establish near equivalence between standard CNNs and handcrafted architectures for which theoretical properties are guaranteed.
- \implies Similar study performed on ResNet architecture.
- \implies First step toward a more complete understanding of CNNs for computer vision.

Conclusion and future work

Introduction

- Proposed models
- Accuracy of the models
- Experiment properties
- Conclusion and future work

- ⇒ On-going work to establish near equivalence between standard CNNs and handcrafted architectures for which theoretical properties are guaranteed.
- \implies Similar study performed on ResNet architecture.
 - $\Rightarrow\,$ First step toward a more complete understanding of CNNs for computer vision.

Future work

- Consolidate analysis: other types of invariants, etc.
- Quantitative evaluation of kernel similarity.
- Focus research on deeper layers.

Thank you for your attention!

ntroduction

Proposed models

Accuracy of the models

Experiment properties

Conclusion and future work

1 Introduction

- 2 Proposed models
- 3 Accuracy of the models
- 4 Experimental properties
- 5 Conclusion and future work

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d'avenir, as well as the ANR grant AVENUE (ANR-18-CE23-0011).

Contents

Appendix

Background on discrete wavelet transform

Related wor – wavelet scattering networks

6 Appendix

- Background on discrete wavelet transform
- Related work wavelet scattering networks

The standard wavelet packet transform (WPT)

h and g ∈ ℝ^ℤ, pair of conjugate mirror filters (CMFs)
separable 2D filter bank

 $\mathbf{G^{(0)}} = \mathbf{h} \otimes \mathbf{h} \quad \mathbf{G^{(1)}} = \mathbf{h} \otimes \mathbf{g} \quad \mathbf{G^{(2)}} = \mathbf{g} \otimes \mathbf{h} \quad \mathbf{G^{(3)}} = \mathbf{g} \otimes \mathbf{g}.$

- Input image: $X_0^{(0)} = X$ Successive decompositions, for each $j \in \{1 \dots J\}$: $\forall l \in \{0 \dots 3\}, \ X_j^{(4k+l)} = \left(X_{j-1}^{(k)} * \overline{G^{(l)}}\right) \downarrow 2.$ $\left\{X_j^{(k)}\right\}_{k \in \{0 \dots 4^{J}-1\}} \text{ is a representation of } X \text{ in a wavelet packet basis.}$
- $J \nearrow$ spatial resolution \searrow and frequency resolution \nearrow .

Appendi>

Background on discrete wavelet transform

Related work – wavelet scattering networks

The standard wavelet packet transform (WPT)

Example with 2 levels of decomposition

Appendi>

Background on discrete wavelet transform

Related wor – wavelet scattering networks

j = 2

The dual-tree complex wavelet packet transform (DT- $\mathbb{C}WPT$)

Properties of standard WPT:

- ✓ sparse signal representation and vertical / horizontal feature discrimination;
- **X** lack of shift invariance and a poor directional selectivity.

Appendix

Background on discrete wavelet transform

Related worl – wavelet scattering networks

Properties of standard WPT:

- ✓ sparse signal representation and vertical / horizontal feature discrimination;
- X lack of shift invariance and a poor directional selectivity.

Workaround: decompose images in a frame of complex oriented waveforms with minimal redundancy.

• Four WPT decompositions $\left\{X_{a,J}^{(k)}\right\}$, $\left\{X_{b,J}^{(k)}\right\}$, $\left\{X_{c,J}^{(k)}\right\}$, $\left\{X_{d,J}^{(k)}\right\}$ with suitable filter banks;

Dual-tree coefficients
$$\left\{ \mathbf{Z}_{J}^{\nearrow(k)} \right\}$$
 and $\left\{ \mathbf{Z}_{J}^{\nwarrow(k)} \right\}_{k \in \left\{ 0..4^{J}-1 \right\}}$:

$$\begin{pmatrix} \mathbf{Z}_J^{\nearrow(k)} \\ \mathbf{Z}_J^{\nwarrow(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{a},J}^{(k)} \\ \mathbf{X}_{\mathrm{d},J}^{(k)} \end{pmatrix} + i \cdot \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{c},J}^{(k)} \\ \mathbf{X}_{\mathrm{b},J}^{(k)} \end{pmatrix}.$$

 \Rightarrow 6 orientations, and near shift-invariance for $\left| \mathbf{Z}_{J}^{\nearrow(k)} \right|$ and $\left| \mathbf{Z}_{J}^{\bigtriangledown(k)} \right|$.

Appendix

Background on discrete wavelet transform

Related work – wavelet scattering networks The dual-tree complex wavelet packet transform (DT- $\mathbb{C}WPT$) Example with 2 levels of decomposition

Appendi

Background on discrete wavelet transform

Related worl – wavelet scattering networks

Appendi×

Background on discrete wavelet transform

Related work – wavelet scattering networks

Image representation based on the continuous wavelet transform, involving convolutions and non-linearities as in CNNs.⁸

Appendia

Background on discrete wavelet transform

Related work – wavelet scattering networks Image representation based on the continuous wavelet transform, involving convolutions and non-linearities as in CNNs.⁸

Appendia

Background on discrete wavelet transform

Related work – wavelet scattering networks Image representation based on the continuous wavelet transform, involving convolutions and non-linearities as in CNNs.⁸

Appendia

Background on discrete wavelet transform

Related work – wavelet scattering networks Image representation based on the continuous wavelet transform, involving convolutions and non-linearities as in CNNs.⁸

⇒ Our contribution: theoretical model imitating the behavior of a standard CNN, with invariance properties as in wavelet scattering networks.

Appendi×

Background on discrete wavelet transform

Related work – wavelet scattering networks

Similitudes with the **Gabor transform**:

- complex, multiscale and oriented filters;
- well-localized in the Fourier domain;
- **sparse** image representations.

Appendi×

Background on discrete wavelet transform Related work

Related worl – wavelet scattering networks

Similitudes with the **Gabor transform**:

- complex, multiscale and oriented filters;
- well-localized in the Fourier domain;
- **sparse** image representations.

Differences with the Gabor transform:

- specifically designed for the discrete world, with perfect reconstruction guarantees and minimal redundancy;
- decimated convolutions, which is consistent with the CNN approach;
- sparse description a single pair of out-of-phase 1D vectors is sufficient to describe the whole process.