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CNNs vs discrete wavelet transforms

Convolutional neural networks (CNNs)1:
✓ state-of-the-art performances in many domains – image

classification, object detection, speech recognition...
✗ very resource-intensive;
✗ empirical approach; lack of mathematical understanding.

Discrete wavelet transforms2:
✓ built on well-established mathematical framework;
✓ very efficient in tasks such as signal compression and denoising;
✗ not widely used for image classification.

Oscillating patterns very often observed in CNN kernels3.

1LeCun2015

2Mallat2009
3Yosinski2014

4 / 23



Introduction

Proposed
models

Accuracy of
the models

Experimental
properties

Conclusion
and future
work

CNNs vs discrete wavelet transforms

Convolutional neural networks (CNNs)1:
✓ state-of-the-art performances in many domains – image

classification, object detection, speech recognition...
✗ very resource-intensive;
✗ empirical approach; lack of mathematical understanding.

Discrete wavelet transforms2:
✓ built on well-established mathematical framework;
✓ very efficient in tasks such as signal compression and denoising;
✗ not widely used for image classification.

Oscillating patterns very often observed in CNN kernels3.

1LeCun2015
2Mallat2009
3Yosinski2014

4 / 23



Introduction

Proposed
models

Accuracy of
the models

Experimental
properties

Conclusion
and future
work

CNNs vs discrete wavelet transforms

AlexNet4 filters (first layer) after training with ImageNet

4Krizhevsky2012
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Objectives

Main objective:
✓ perform a theoretical study of CNN properties for image classification.

What this work is NOT about (at least not as primary objective):
✗ increase performance of CNNs;
✗ decrease training complexity.
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Roadmap

a Build a sparse model of existing CNN architectures, based on the
dual-tree wavelet packet transform (DT-CWPT).5,6

=⇒ Subset selection among all possible configurations.

b Assess model’s accuracy with respect to the original architecture.

c Study properties of the sparse model, such as directional selectivity,
stability with respect to translations, rotations, deformation, etc.

5Kingsbury2001
6Bayram2008
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Kernel visualization

Is the model with 2 levels of dual-tree decomposition satisfactory?

Kernel visualization in the domain:

AlexNet first layer Replacement with dual-tree WPT
(2 levels of decomposition)

=⇒ Too small spatial extent (or too wide frequency extent), compared to
standard AlexNet.

=⇒ Idea: add one extra level of decomposition.
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Is the model with 2 levels of dual-tree decomposition satisfactory?

Kernel visualization in the frequency domain:

AlexNet first layer Replacement with dual-tree WPT
(2 levels of decomposition)

=⇒ Too small spatial extent (or too wide frequency extent), compared to
standard AlexNet.

=⇒ Idea: add one extra level of decomposition.
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Which choice of decomposition depth?

Kernel visualization in the domain:

AlexNet first layer Replacement with dual-tree WPT
(2 levels of decomposition)

Replacement with dual-tree WPT
(3 levels of decomposition)

=⇒ A model with 3 levels of decomposition seems more relevant, in both
spatial and frequency domains.

=⇒ Can we find a measure of similarity between kernels?
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Similarity between convolution kernels

Example with standard AlexNet:

Spatial representation Frequential representation

Characteristic frequencies obtained by using the 2D discrete-time Fourier
transform as well as the structure tensor7.

7Jahne2004
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Similarity between convolution kernels

Characteristic frequencies of AlexNet-based kernels
(J denotes the number of decomposition stages)

=⇒ In addition to being more localized in the Fourier domain, the model with
3 levels of decomposition reaches lower frequencies, that we also find in
the standard model.

=⇒ This confirms our intuition about the choice for a “best" model.
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Performance of the models

Another way of assessing the accuracy of our models is to compare their
performances with respect to standard CNNs.

AlexNet-based models trained on ImageNet ILSVRC2012.

Validation error along training
(J denotes the number of decomposition stages)

=⇒ Our models reach the performance of standard AlexNet.
=⇒ Validation error decreases more rapidly with J = 3. This may be due to

the reduced model complexity, compared to Standard AlexNet.
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Robustness with respect to small shifts

Important property of DT-CWPT: near-shift invariance, when applied to the
modulus of complex coefficients.
Let’s see how this property is transferred to the output of the network.

Forward-propagation of 8 shifted versions of an image;
Kulback-Leibler divergence between softmax of outputs;
Average values computed over a subset of ImageNet (50, 000
images).
Also included: network implementing classical WPT, which is
NOT shift-invariant.

Better shift-stability with J = 3!
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Conclusion and future work

=⇒ On-going work to establish near equivalence between standard CNNs and
handcrafted architectures for which theoretical properties are guaranteed.

=⇒ Similar study performed on ResNet architecture.
=⇒ First step toward a more complete understanding of CNNs for computer

vision.

Future work
Consolidate analysis: other types of invariants, etc.

Quantitative evaluation of kernel similarity.

Focus research on deeper layers.
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Thank you for your attention!

1 Introduction

2 Proposed models

3 Accuracy of the models

4 Experimental properties

5 Conclusion and future work

a. Sparse models
of standard CNNs

b. Accuracy of
the models

c. Properties of
the models

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir, as well as the ANR grant AVENUE (ANR-18-CE23-0011).
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The standard wavelet packet transform (WPT)

h and g ∈ RZ, pair of conjugate mirror filters (CMFs)
separable 2D filter bank

G(0) = h ⊗ h G(1) = h ⊗ g G(2) = g ⊗ h G(3) = g ⊗ g.

Input image: X(0)
0 = X

Successive decompositions, for each j ∈ {1 . . J}:

∀l ∈ {0 . . 3} , X(4k+l)
j =

(
X(k)

j−1 ∗ G(l)
)

↓ 2 .{
X(k)

J

}
k∈{0..4J −1}

is a representation of X in a wavelet packet basis.

J ↗ =⇒ spatial resolution ↘ and frequency resolution ↗.
2 / 7
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The standard wavelet packet transform (WPT)
Example with 2 levels of decomposition

j = 0 j = 1 j = 2
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The dual-tree complex wavelet packet transform (DT-CWPT)

Properties of standard WPT:
✓ sparse signal representation and vertical / horizontal feature

discrimination;
✗ lack of shift invariance and a poor directional selectivity.

Workaround: decompose images in a frame of complex oriented waveforms
with minimal redundancy.

Four WPT decompositions
{

X(k)
a, J

}
,
{

X(k)
b, J

}
,
{

X(k)
c, J

}
,
{

X(k)
d, J

}
with

suitable filter banks;

Dual-tree coefficients
{

Z↗(k)
J

}
and

{
Z↖(k)

J

}
k∈{0..4J −1}

:

(
Z↗(k)

J

Z↖(k)
J

)
=

(
1 −1

1 1

)(
X(k)

a, J

X(k)
d, J

)
+ i ·

(
1 1

1 −1

)(
X(k)

c, J

X(k)
b, J

)
.

⇒ 6 orientations, and near shift-invariance for
∣∣∣Z↗(k)

J

∣∣∣ and
∣∣∣Z↖(k)

J

∣∣∣.
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{

X(k)
a, J

}
,
{

X(k)
b, J

}
,
{

X(k)
c, J

}
,
{

X(k)
d, J

}
with

suitable filter banks;

Dual-tree coefficients
{

Z↗(k)
J

}
and

{
Z↖(k)

J

}
k∈{0..4J −1}

:

(
Z↗(k)

J

Z↖(k)
J

)
=

(
1 −1

1 1

)(
X(k)

a, J

X(k)
d, J

)
+ i ·

(
1 1

1 −1

)(
X(k)

c, J

X(k)
b, J

)
.

⇒ 6 orientations, and near shift-invariance for
∣∣∣Z↗(k)

J

∣∣∣ and
∣∣∣Z↖(k)

J

∣∣∣.
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Appendix
Background
on discrete
wavelet
transform

Related work
– wavelet
scattering
networks

The dual-tree complex wavelet packet transform (DT-CWPT)
Example with 2 levels of decomposition

∣∣Z↗(k)
2

∣∣ ∣∣Z↖(k)
2

∣∣
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Related work – wavelet scattering networks

Image representation based on the continuous wavelet transform, involving
convolutions and non-linearities as in CNNs.8

=⇒ Our contribution: theoretical model imitating the behavior of a standard
CNN, with invariance properties as in wavelet scattering networks.

8Bruna2013
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Why the dual-tree complex wavelet packet transform?

Similitudes with the Gabor transform:
complex, multiscale and oriented filters;
well-localized in the Fourier domain;
sparse image representations.

Differences with the Gabor transform:
specifically designed for the discrete world, with perfect reconstruction
guarantees and minimal redundancy;
decimated convolutions, which is consistent with the CNN approach;
sparse description – a single pair of out-of-phase 1D vectors is sufficient
to describe the whole process.
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