

Context

Desired feature extraction properties for image classification:

- 51 retain discriminant image components (class separation);
- 51 reduce intra-class variability.

Key property: stability w.r.t. input transformations.

Oscillating patterns very often observed in CNN kernels.

Fig. 1: AlexNet's first layer after training with ImageNet. Left: spatial domain. Right: Fourier domain.

Are CNN First Layers Shift-Invariant?

Objectives

- 1. Theoretical study: **establish a measure of shift invariance** for max pooling output feature maps.
- 2. Experimental study: **improve model stability** by using the tools introduced in the theoretical study.

Related work

- 51 Preliminary result sketched by Waldspurger in the continuous case [Wal15]. Does this extend to discrete subsampled convolutions?
- 51 Invariance study done by Wiatowski and Bölcskei [WB18], in the continuous framework. What about aliasing? What about max pooling?
- 51 Antialiasing methods based on low-pass filtering [Zha19; Zou+20] led to improved accuracy, despite a loss of information. **Possibility to design** an antialiasing method preserving high-frequency information?

On the Shift Invariance of Max Pooling Feature Maps in CNNs

Hubert Leterme, hubert.leterme@univ-grenoble-alpes.fr

Université Grenoble Alpes, Laboratoire Jean Kuntzmann Inria Grenoble Rhône-Alpes, Thoth project-team

1a. Theoretical results

Operator in "standard" CNNs: *R***Max** $\mathcal{R}_m : \mathbf{X} \mapsto ((\mathbf{X} \star \mathbf{V}) \downarrow m)$ $\mathcal{R}_m \mathbf{X}[n] := \max_{\|k\|_{\infty} \le 1} \mathbf{Y}[2n+k], \text{ with }$ $Y[n] := (X \star V) [mn].$

 $\mathcal{C}_{2m} : \mathbf{X} \mapsto |(\mathbf{X} \star \mathbf{W}) \downarrow (2m)|$ $\mathcal{C}_{2m}\mathbf{X}[n] := |\mathbf{Z}[n]|$, with $Z[n] := (X \star W) [2mn].$

The complex filter W is obtained by computing the **2D Hilbert transform** [HHB97] of the trained weight V, i.e., $W := V + i\mathcal{H}(V)$.

Theorem 1 (Stability of CMod). If \widehat{W} is sufficiently localized, then $\mathcal{C}_{2m}(\mathcal{T}_q X) \approx \mathcal{C}_{2m} X$, where \mathcal{T}_q denotes a translation operator with $q \in \mathbb{R}^2$.

Theorem 2 (Similarity between RMax and CMod). If \widehat{W} is sufficiently localized, then $\|\mathcal{R}_m X - \mathcal{C}_{2m} X\|_2$ remains small, except for some pathological frequencies.

Corollary (Stability of *R*Max). *The shift invariance of RMax depends on* the characteristic frequency of W, as well as its Fourier resolution.

1b. Shift invariance of max pooling outputs

Experiments conducted **50K images from ImageNet** $(224 \times 224 \text{ pixels})$, decomposed acc. to the **dual-tree wavelet packet transform (DT-CWPT)** [BS08] with J levels of decomposition, s.t. $m = 2^{J-1}$ (subsampling factor in **RMax**).

J=3

Fig. 5: Mean discrepancy between RMax and CMod outputs.

Fig. 6: Shift stability of RMax outputs.

Each filter is represented as a pixel **localized around its charact. frequency**.

2h.	Evaluation	scores

Model		One-crop			Ten-crops			Shif	ts		
		top-1		top-5		p-1	top-5	mFI	R		
		AlexNet									
Standard		45.3	22.2		41.3		19.3	100.	.0		
\mathbb{R} Max ^a		44.9		21.8		0.8	19.0	101	.4		
$\mathbb{C}\mathrm{Mod}^\mathrm{a}$		44.3		21.3		0.2	18.5	88.	.0		
Blur		$\overrightarrow{44.8}$		$\overline{22.0}$		$\overline{1.1}$	- <i>1</i> 9. <i>1</i>	$\overline{58}$.1		
$Blur \mathbb{R}Max^{a} + Blur$		44.6		21.9		0.6	19.0	59.	.2		
$\mathbb{C}Mod^{a} + Blu$	ır	43.6	2	20.9		9.5	17.9	71	.0		
				F	Res	Net-3	4				
Standard		27.6		9.2		4.8	7.7	78.	78.1		
\mathbb{R} Max ^a		27.4		9.2	2	4.7	7.6	77	.2		
$\mathbb{C}Mod^{\mathrm{a}}$		27.2		9.0		4.4	7.4	73.	.1		
Blūr		$\frac{1}{26.5}$		$\bar{8.7}$		4 .1	7.3	$\left \overline{60} \right $.3		
$Blur \mathbb{R}Max^{a} + Blur$		26.6		8.7		4.3	7.3	62	.7		
$\mathbb{C}Mod^{a}$ + Blur		26.6		8.6		4.0	7.3	61	.5		
ABlur		26.1		$\overline{8.3}$		3.5	7.0	$\left \overline{60} \right $.8		
$ABlur \mathbb{R}Max^{a} + ABlur$		26.0		8.2		3.6	6.9	62.	.1		
$\mathbb{C}Mod^{a}$ + ABlu		26.1		8.2		3.7	7.0	63	.1		
Fig. 9: E	valu	ation s	scor	es oi	n Ir	nageN	let				
		ResNet-18					-34				
Widel	1crp	o 10c	rp	shf	t	1crp	10crp	s sh	ft		
Standard	14.9) 10	.8	100.	.0	15.2	10.9	9 100).:		
\mathbb{R} Max ^a	14.2	2 10	.3	3 92.		14.5	10.5	5 99	99.2		
$_$ $_$ $_$ $_$ $_$ $_$ \square	13.8	<u> </u>	9.6 8		.8	12.9	9.2	2 _ 93	3.(
Blur	14.2	2 10	$10.4^{}$.7	15.7	11.0	5 88	3.2		
$\operatorname{Blur}\mathbb{R}\operatorname{Max}^{\mathrm{a}}$ + Blur 1		9	.7	84	.6	13.2	9.9	9 85	5.6		

Fig. 10: Evaluation scores on CIFAR-10

CMod^a + ABlur | 12.8 9.7 81.7 | 12.8 9.2 86.6

ABlur \mathbb{R} Max^a + ABlur | 14.5 11.0 86.5 | 14.0 10.4 93.3

 $-\overline{12.8}$ $-\overline{91.9}$

2c. Training and evaluation curves

Fig. 11: Top-1 validation error on ImageNet, AlexNet-based models.

References and acknowledgments

- [BS08] I. Bayram and I. W. Selesnick. "On the Dual-Tree Complex Wavelet Packet and M-Band Transforms". In: IEEE Trans. Signal Processing 56.6 (2008).
- [HHB97] J. Havlicek et al. "The Analytic Image". In: Proc. ICIP. 1997.
- [Wal15] I. Waldspurger. "Wavelet Transform Modulus : Phase Retrieval and Scattering". Doctoral Thesis. ENS, Paris, 2015.
- [WB18] T. Wiatowski and H. Bölcskei. "A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction". In: IEEE Trans. Information Theory 64.3 (2018).
- [Zha19] R. Zhang. "Making Convolutional Networks Shift-Invariant Again". In: *ICML*. 2019.
- [Zou+20] X. Zou et al. "Delving Deeper into Anti-aliasing in ConvNets". In: *BMVC*. 2020.

Submitted papers:

[1] H. Leterme, K. Polisano, V. Perrier, and K. Alahari, "On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks", arXiv:2209.11740, Sep. 2022. Under review.

[2] H. Leterme, K. Polisano, V. Perrier, and K. Alahari, "From CNNs to Shift-Invariant Twin Wavelet Models", Nov. 2022. Under review.

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d'avenir, as well as the ANR grant AVENUE (ANR-18-CE23-0011).