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Novel Instantaneous Frequency Estimator in
Multicomponent Signals with Interfering or

Crossing Modes
S. Meignen, and K. Polisano

Abstract—In this paper, we introduce a novel estimator
for the instantaneous frequencies of the modes making up
multicomponent signals, particularly when they are close or
crossing in the time-frequency plane. Our approach is based
on locally optimizing the spectrogram window in the time-
frequency domain to enhance signal representation, depending
on whether the modes are isolated or interfering. To achieve
this, we employ an adaptive criterion: for isolated modes, the
window is selected to minimize time dependency, while for
close or interfering modes, it is chosen to reduce interference.
By integrating this adaptive time-frequency representation with
ridge detection, and then by using spline fitting, we obtain
highly robust instantaneous frequency estimates. Our proposed
method demonstrates strong performance in handling MCSs with
close or crossing modes, and is shown to outperform state-of-
the-art instantaneous frequency estimation techniques, including
methods based on synchrosqueezing and the chirplet transform.

Index Terms—Time-frequency, multicomponent signal, inter-
ference, spline approximation.

I. INTRODUCTION

NON-stationary signals such as audio (music, speech,
bird songs) [1], electrocardiogram [2] or thoracic and

abdominal movement signals [3] can be modelled as a super-
imposition of amplitude and frequency-modulated (AM/FM)
modes, called multicomponent signal (MCS), and defined as

f(t) =

P∑
p=1

fp(t), with fp(t) = Ap(t)e
2iπϕp(t), (1)

where the instantaneous amplitudes (IAs) Ap(t), and the
instantaneous frequencies (IFs) ϕ′p(t) are set to be positive.
Associated with this representation is the ideal TFR defined
by:

ITf (t, η) =

P∑
p=1

Ap(t)δ(η − ϕ′p(t)). (2)

To estimate ITf , the short-time Fourier transform (STFT)

V h
f (t, η) =

∫
R
f(x)h(x− t)e−i2πη(x−t)dx, (3)

with h assumed to be a real window, is commonly used along
with its squared modulus Sh

f := |V h
f |2, the spectrogram. The
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ideal representation associated with the spectrogram represen-
tation is thus the same as (2) except that the amplitude is
replaced by the squared amplitude.

Traditionally, IFs are estimated from the spectrogram by
considering ridge detection, which consists in detecting and
connecting, along the time axis, local maxima along the fre-
quency axis of the spectrogram [4]. Such a technique has three
main drawbacks: first, it is constrained by the frequency res-
olution of the spectrogram, which limits its accuracy; second,
it becomes irrelevant in the presence of strong interference
between modes, especially when they are crossing; and finally,
it is sensitive to the presence of noise.

Interference between modes, letting apart mode crossing,
are strongly related to the window choice [5], and to auto-
matically determine an appropriate window length to separate
the modes is challenging. Unfortunately, such a window length
may not be relevant to represent strongly frequency modulated
modes. Indeed, the spectrogram reflects the frequency modula-
tion of a signal in such a way that, on a ridge associated with a
mode, its magnitude is smaller where a mode exhibits strong
frequency modulation. As a consequence, ridges associated
with a mode are less robust to noise where the frequency
modulation of that mode is strong. To find a criterion to auto-
matically determine an appropriate window length depending
on whether the modes are frequency modulated or interfering
is one objective of the present paper.

For that purpose, we propose an algorithm to locally deter-
mine, in the time-frequency (TF) plane, an appropriate window
length associated with the spectrogram representation, and
then define the corresponding time-frequency representation
(TFR), which we call spectrogram approximation. We then
explain how to adapt ridge detection (RD) based on the
notion of relevant ridge portions (RRPs), introduced in [6],
to that new TFR. Spline fitting is finally used to obtain the
IF estimations of the modes making up the MCS, and this
final step is specifically designed to handle potential mode
crossings.

The paper is organized as follows. In Section II, we detail
the spectrogram model, and emphasize how frequency modu-
lation and interference affect that representation. This gives us
a direction to follow to automatically determine the window
length in the TF plane, which is done in Section III, in which
we also describe the novel ridge detection and spline fitting
used to perform the IF estimation of the modes. In Section IV,
we recall different state-of-the-art techniques for IF estimation
which we compare with in the final Section V.
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II. MODEL AND DISCUSSION

A. Spectrogram of Separated Modes

In the sequel, to allow for an analytic expression of the
spectrogram, the Gaussian window h(t) = hσ(t) =

1
σ e

−π t2

σ2

is used to compute the STFT and the spectrogram. The Fourier
transform of that window is ĥσ(η) = e−2πσ2η2

, denoted by
gσ . When the modes making up an MCS are well-separated
pure tones fp(t) = Ap(t)e

i2πωpt, the spectrogram can be
approximated by [7] (provided the amplitudes of the modes
vary slowly in time):

Shσ

f (t, η) ≈
P∑

p=1

Ap(t)
2gσ(η − ωp)

=

P∑
p=1

ap(t)gσ(η − ωp),

(4)

which corresponds to the convolution along the frequency axis
of ITf with gσ . To estimate (ωp)p=1,··· ,P , the Fourier-based
synchrosqueezing transform (FSST) combines with ridge de-
tection was proposed in [7]. As will be recalled later, it
basically consists in reassigning the STFT along the frequency
axis, and then computing the IF estimations by considering
the value of the reassignment operator on the ridge of FSST.
Alternatively, techniques based on finite rate of innovation
(FRI) were developed in which the convolution kernel can
either be a cardinal sine, a Gaussian function [8], or a more
general compactly supported functions such as those satisfying
the Strang–Fix conditions [9], [10].

A first important limitation of such approaches is that the
spectrogram model assumes the modes are pure tones. When
this is not the case, the spectrogram at time t is no longer
the convolution along the frequency axis of ITf with a fixed
kernel. Therefore, FRI-based models for IF estimation can
be highly inaccurate when the modes contain strong fre-
quency modulation, though used with success in low frequency
modulation situations [11]. To cope with that modulation
issue, the second order synchrosqueezing transform (FSST2),
considering a local second order polynomial approximation for
the phase of the modes, was proposed to replace FSST in the
IF estimation process [12], [13]. Such an approach was then
extended to higher-order local polynomial phase approxima-
tion in [14], unfortunately increasing the computational cost
of the transform and its sensitivity to noise. Indeed, during the
reassignment process the noise contained in STFT coefficients
is also reassigned, but it is very challenging to figure out how
the noise is reassigned [15]. To cope for the noise issue, new
techniques have been recently developed to locally adapt the
local polynomial phase order depending on specific criteria,
either by finding were a mode can be locally approximated
by a linear chirp [16] or by locally changing the order of
polynomial approximation [17].

B. Spectrogram of MCS Made of Modulated Modes

In this paper, we propose an alternative to reassignment
operators to obtain IF estimations in the case of modulated

modes. Our primary goal is to better understand the im-
portance of modulation in the spectrogram representation.
For that purpose, let us assume that the pth mode devi-
ates from pure harmonicity, and can be locally approxi-
mated around time t, by a linear chirp, namely fp(τ) ≈

Ap(t)e
i2π

(
ϕ′
p(t)(τ−t)+

ϕ′′
p (t)

2 (τ−t)2
)

. Then, the spectrogram of
that mode satisfies [13]

Shσ

fp
(t, η) ≈ Ap(t)

2 e
−2π

σ2(η−ϕ′
p(t))2

1+σ4ϕ′′
p (t)2√

1 + σ4ϕ′′p(t)
2
, (5)

where this approximation remains valid as long as the am-
plitude Ap varies slowly in the vicinity of t. Under this
assumption, the spectrogram can be modeled by considering
separated modes as follows:

Shσ

f (t, η) ≈
P∑

p=1

Ap(t)
2gσ,ϕ′′

p (t)
(η − ϕ′p(t)), (6)

with

gσ,ϕ′′
p (t)

(η) =
e
−2π σ2η2

1+σ4ϕ′′
p (t)2√

1 + σ4ϕ′′p(t)
2
, (7)

meaning gσ = gσ,0. So, considering gσ,ϕ′′
p (t)

instead of gσ ,
this formulation is similar to that involving pure tones, except
that the convolution kernel now depends on the frequency
modulation (or chirp rate (CR)) of each mode.

Frequency modulation not only affects the width of the
Gaussian kernel but also its magnitude, which has a great
impact on the quality of representation in noisy situations. To
illustrate the error one makes by not taking into account the
frequency modulation in the spectrogram model, we consider
the two mode signal, both with amplitude 1, of Fig. 1, in which
the left subfigure corresponds to the spectrogram obtained
with a large σ, the middle one to a small σ, and the graph
to the right represents a slice of the spectrogram associated
with the time index corresponding to the vertical red line.
This exemplifies that when σ is small, the spectrogram of a
modulated mode is similar to that of a pure harmonic, which
can be interpreted by remarking that gσ,ϕ′′

p (t)
is closer to gσ

as σ goes to 0.
To obtain the same response in the spectrogram regardless

of the modulation, it is clear that one had rather choose a small
σ, in which case the spectrogram of the MCS resembles that
of separated pure tones described in (4). Note that to choose
such a small value for σ is somehow in contradiction with
a choice commonly made in the literature which consists of
minimizing the Rényi entropy associated with the spectrogram
to find an appropriate σ to compute STFT [18]. Such an
entropy has been extensively studied and has shown to be an
interesting measure [19], [20], with very useful properties such
as component counting [20]. As remarked in [21], for a linear
chirp model [21] and when hσ is used to compute the STFT,
Rényi entropy is minimized for σ = 1√

ϕ′′(t)
. Such a value for

σ minimizes the spreading of the kernel gσ,ϕ′′(t), which, in this
case, is equal to g σ√

2
. However, it is not optimal for mitigating

the impact of frequency modulation on the spectrogram.
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Fig. 1: (a): spectrogram of a two mode signal (each mode has amplitude 1), σ = 0.01, (b): same as (a) but for σ = 0.03, (c):
plot of the spectrograms restricted to the red line drawn on each of the first two figures

C. Spectrogram of MCS Made of Close Modes
In this section, we take a closer look at the case of two

close modes, starting with the case of two pure tones.
1) The case of pure tones: Consider a signal f composed

of only two pure tones f(t) = A(t)ei2πω1t + ei2πω2t, with
A(t) varying slowly. Computing its STFT gives the following
approximation for the spectrogram:

Shσ

f (t, η) ≈

Modes part︷ ︸︸ ︷
A(t)2e−2πσ2(η−ω1)

2

+ e−2πσ2(η−ω2)
2

+2A(t)e−πσ2 (ω2−ω1)2

2 e−2πσ2(η−ω1+ω2
2 )

2

cos(2π(ω2 − ω1)t)︸ ︷︷ ︸
Interference part

=

3∑
p=1

ap(t)gσ(η − ωp),

(8)
with ω3 = ω1+ω2

2 . An important remark is that a3(t) varies
with time and can be negative. For the other modes, ap
approximates the squared amplitude of the modes. This re-
sult generalizes to a signal made of P harmonics f(t) =
P∑

p=1
Ap(t)e

i2πωpt where the spectrogram at time t can be

approximated by (provided each amplitude Ap varies slowly)

Shσ

f (t, η) ≈
Q∑

p=1

ap(t)gσ(η − ϕ′p(t)) with Q = P (P+1)
2 . (9)

Due to the quadratic nature of the spectrogram, each pair of
modes in the signal will thus produce an additional term (hence
the Q in Eq. (9)), responsible for some interference patterns
observed when those modes get too close in frequency. It
is thus clear that interference plays an important role in the
spectrogram representation, but to take into account all the
cross-terms in the spectrogram model is impractical, since the
number Q of modes increases rapidly with P , and most of
them are associated with very small amplitude. Nevertheless,
we will see later in which circumstances we should bear in
mind this interference term to improve IF estimation.

In the studied context, it is clear that interference terms are
dumped by choosing a large σ as opposed to the choice of a

small σ when the modes are separated to minimize the impact
of frequency modulation on the spectrogram representation.
This pleads in favor of adapting the window choice to the TF
content of the signal. However, the situation becomes more
complex when considering close but non-harmonic modes, as
we shall now see.

2) The case of two parallel linear chirps: Let us consider
the sum of two linear parallel linear chirps A(t)ei2πϕ1(t) +
ei2πϕ2(t) with A(t) varying slowly. Then, one has [5]:

Shσ

f (t, η) ≈ A(t)2gσ,c(η − ϕ′1(t)) + gσ,c(η − ϕ′2(t)) + I(t, η),
(10)

with c = ϕ′′1(t) = ϕ′′2(t), and where the interference term takes
the following form:

I(t, η) := 2A(t)e−πσ2
c

(ϕ′
2(t)−ϕ′

1(t))2

2 cos(2πϕ(t, η))

gσ,c

(
η − ϕ′1(t) + ϕ′2(t)

2

)
,

(11)

with σc = σ√
1+σ4c2

, and

ϕ(t, η) :=
(σc
σ

)2

(ϕ2(t)− ϕ1(t))

−cσ2σ2
c (ϕ

′
2(t)− ϕ′1(t))

(
η − ϕ′1(t) + ϕ′2(t)

2

)
.

In this case, the non-oscillatory factor of the interference reads

a(t, η) = 2Ae−πσ2
c

(ϕ′
2(t)−ϕ′

1(t))2

2 cos(2πϕ(t, η)). (12)

So, whatever the choice for σ, the interference term cannot be
made negligible (except at TF points (t, η) where the cosine
vanishes). More precisely, minimizing the absolute value of
a(t, η) requires maximizing σc, which corresponds to σ = 1√

c
,

the same value obtained by minimizing the Rényi entropy.
With this choice of σ, one has gσ,c = g σ√

2
. Thus modulation

alters the spectrogram representation, and interference is still
present.

Based on this simple analysis, we conclude that it is not
possible to get rid of interference simply by seeking an optimal
parameter σ locally in the TF plane. The best we can do is
to choose a σ that minimizes the importance of interference
in the spectrogram and then improve IF estimation by taking



4

into account the remaining interference, as we shall see in the
next section.

III. ALGORITHM FOR IF ESTIMATION

A. Spectrogram Approximation

To begin, we first discretize STFT in time and frequency,
to obtain the discrete spectrogram sσf [n, k] ≈ Shσ

f ( n
Fs
, k
KFs),

where n ∈ J0, N − 1K, k ∈ J0,K − 1K and Fs is the sampling
frequency.

In what follows, we consider that the discrete spectrogram
is approximated by:

sσf [n, k] ≈
Rσ

n∑
p=1

ap[n]gσ

(
k

K
Fs − ηp,n

)
, (13)

with Rσ
n varying with n and σ, and being defined later.

To compute this approximation, let us consider the case of
a noisy signal f̃ = f + ε, with ε a complex Gaussian white
noise with variance σ2

ε . vσε , the discrete STFT of the noise, is
also Gaussian with zero mean and satisfies [22]:

Var (ℜ{vσε [n, k]}) = Var (ℑ{vσε [n, k]}) = σ2
ε∥hσ∥22,

where ∥hσ∥2 denotes the l2-norm of hσ . The ratio sσε
σ2
ε∥hσ∥2

2
fol-

lows a χ2 distribution with two degrees of freedom. Assuming
the noise variance σ2

ε is known, the probability that sσε [n, k] ≥
9σ2

ε∥hσ∥22 is less than 1%. To estimate γ = σε∥hσ∥2, we use
the robust estimator proposed in [23]:

γ̂ :=

median
∣∣∣∣ℜ{

vσ
f̃
[n, k]

}
n,k

∣∣∣∣
0.6745

. (14)

For each time index n, we consider the local maxima
along the frequency index of sσ

f̃
[n, .] that are above the noise

threshold 9γ̂2, the location of which corresponds to the set of
indices Lσ

n. The coarse approximation of sσf [n, .] defined in
(13) then corresponds to:

s̃σf [n, k] =
∑
q∈Lσ

n

sσ
f̃
[n, q]gσ(k − q). (15)

In this model, modes associated with interference terms that
do not correspond to extrema of the spectrogram are not con-
sidered. To take them into account when necessary, we proceed
as follows. First, we define the essential support J−Ωσ,ΩσK of
the Gaussian gσ as the interval where |gσ| > 10−3 restricted
on the grid, hence

Ωσ =

⌊
K

Fs

√
3 log(10)

2πσ2

⌋
, (16)

where ⌊.⌋ is the entire part. Next, we define the following sets
of intervals{

Iσq = Jq − Ωσ, q +ΩσK, q ∈ Lσ
n

}
. (17)

We then distinguish three cases which we detail hereafter:
• Iσq

⋂
Iσq′ = ∅,∀q′ ̸= q, the extremum located at q is

isolated, we denote this set of locations as Sσ1,n.
• (q, q′), Iσq

⋂
(
⋃

l ̸=q I
σ
l ) = Iσq′

⋂
(
⋃

l ̸=q′ I
σ
l ) ̸= ∅, meaning

Iσq and Iσq′ are intersecting but with no other intervals in

the set defined by (17). We denote this set of pairs of
locations (q, q′) as Sσ2,n.

• Iσq intersects Iσq′ for several q′ in Lσ
n.

When q corresponds to the third situation we remove it
from the spectrogram approximation, because it corresponds
to a complex interference pattern that we shall not consider.
When q is in Sσ1,n, we keep this extremum in the spectro-
gram approximation, and when (q, q′) ∈ Sσ2,n, we take into
account the interference term using the following strategy.
As shown earlier, when two harmonic modes or two parallel
linear chirps interfere, the mode created by the interference is
associated with a Gaussian function centered at the average
of the centers of the Gaussian creating the interference (see
Eq. (11)). Consequently, we propose to exploit this property
when identifying the position and amplitude of the Gaussian
functions involved in (10). Specifically, assuming the modes
interfering correspond to frequency indices q and q′ assuming
without loss of generality q < q′, we perform a refitting of the
spectrogram approximation in the union of interval Iσq

⋃
Iσq′ .

This refitting procedure accounts for the interference term
(incorporating the position constraint for this term) as well as
the modulation (allowing flexibility in the standard deviation
of the Gaussian function).

More precisely, we seek for the optimal vector of parameters
p0 = (a1, a2, a3, η1, η2, σ) associated with the following
Gaussian mixture model:

sp(x) = a1gσ(x−η1)+a2gσ(x−η2)+a3gσ
(
x− η1 + η2

2

)
,

(18)
by minimizing the least-square error with the noisy spectro-
gram on Iσq

⋃
Iσq′ , as summarized in Algorithm 1.

Algorithm 1: REFITTING

Input: sσ
f̃

, Fs, K, q, q′, σ
1: Initialization: p0 = (1, 1, 0, q, q′, σ)
2: p⋆ ← argmin

p∈R6

∥sσ
f̃
[n, .]− sp(Fs

K .)∥22,Iσ
q

⋃
Iσ
q′

3: ã1, ã2, η̃1, η̃2 ← p⋆1, p
⋆
2, p

⋆
4, p

⋆
5

Output: Positions and amplitudes (η̃p, ãp)
2
p=1 of the refitted

Gaussian functions.

We then assign to the interval Iσq for q ∈ Sσ1,n the following
error, namely:

Eσ[n, k] =

√√√√√√
∑

r∈Iσ
q

(s̃σf [n, r]− sσf̃ [n, r])
2

∑
r∈Iσ

q

sσ
f̃
[n, r]2

,∀k ∈ Iσq . (19)

For (q, q′) ∈ Sσ2,n, one defines sσ
f̃,(q,q′)

(x) = ã1gσ(x−η̃1)+
ã2gσ(x− η̃2), and then:

Eσ[n, k] =

√√√√√√√
∑

r∈Iσq
⋃

Iσ
q′

(sσ
f̃,(q,q′)

(Fs
K
r)− sσ

f̃
[n, r])2∑

r∈Iσq
⋃

Iσ
q′

sσ
f̃
[n, r]2

, ∀k ∈ Iσq
⋃

Iσq′ .

(20)
sσ
f̃,(q,q′)

corresponds to the approximation without taking
the interference term into account (though interference is
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Fig. 2: (a): spectrogram approximation defined in Eq. (21) of a three mode signal (input SNR 20 dB), σ = 0.01, (b): same as
(a) but for σ = 0.02, (c): same as (a) but for σ = 0.03;(d): same as (a) but for σ = 0.04; same as (e) but for σ = 0.05

used in the refitting process). The rationale to use such an
approximation is that, while interference is used to improve
IF estimation, and the error shall then measure the relative
importance of the interference in the spectrogram. Finally, for
any frequency index k other than those involved in Eq. (19)
and Eq. (20), Eσ[n, k] is set to 1. For that parameter value σ,
the final approximation of the spectrogram reads:

sσapp[n, .] =
∑

q∈Sσ
1,n

s̃σf [n, .]1
σ
Iq+

∑
(q,q′)∈Sσ

2,n

sσ
f̃,(q,q′)

[n, .]1Iσ
q

⋃
Iσ
q′
,

(21)
and Rσ

n corresponds to the cardinal of the extrema involved
in that sum.

B. Optimizing the Window Size

A natural advantage of the just-defined approximation of
the spectrogram is that the noise is naturally eliminated in
(21), because only the extrema above the noise threshold are
considered in the approximation. However, to illustrate the
limitation of considering an approximation based on a single
window, we plot sσapp in Fig. 2 for different values of σ,
for a signal containing both interfering modes and strongly
frequency-modulated modes. As expected, with a small value
for σ, the strongly modulated mode is well represented in the
spectrogram, but the two parallel linear chirp are entangled.
When σ increases, the readability of the strongly modulated
mode decreases while the linear chirps are better separated.
So, considering an approximation (21) with a single window
is not relevant.

Our strategy here is to compute the spectrogram approxima-
tion for different value of σ, and then find out what is locally
the best approximation based on some criterion defined here-
after. For that purpose, we depict in Fig. 3 (a), the spectrogram
approximation associated with the red lines drawn on the sub-
figures of Fig. 2. As far as the two linear chirps are concerned,
we see that for a small σ, the two modes result in a single
extremum along the frequency axis at each time instant. Thus,
we expect the error Eσ to be huge at the corresponding TF
locations because the interference is not taken into account in
the approximation. Then, when σ increases, two close extrema
associated with the two linear chirps appear, the approximation
takes into account the interference, and the value of Eσ at
the corresponding locations is expected to tell us which σ
corresponds to the minimal contribution of the interference in
the spectrogram. Switching to the strongly modulated mode,
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Fig. 3: (a): spectrogram approximation corresponding to red
lines on subfigures of Fig. 2; (b): corresponding non zero
coefficients in sσapp for the studied values of σ

a small value for σ should lead to a small error Eσ at the
corresponding locations because, on the one hand, it minimizes
the error between the spectrogram model,i.e. without taking
frequency modulation into account, and the true spectrogram
in terms of amplitude, and on the other hand, for a large σ
intra-mode time interference may occur, and the spectrogram
departs from the spectrogram model compared with in the
error estimation. Another important aspect we use for finding
the optimal σ, is that as, when σ1 < σ2, Ωσ1 > Ωσ2 , the
domain associated with an isolated mode shrinks when σ
increases. This is also true in the case of two interfering modes,
namely if (q, q′) ∈ Sσ2,n, then the length of Iσq

⋃
Iσq′ decreases

as σ increases. This is illustrated in Fig. 3 (b), in which we
plot the support of sσapp for different σ. We also remark that
when σ varies, the intervals corresponding to the spectrogram
approximation of a mode intersect, so that one can easily make
the connection between different approximation obtained with
close σ.

Based on these remarks, our strategy is to define an approx-
imation of the spectrogram based on an adapted window in the
TF plane. This is done by considering an initial approximation
of the spectrogram obtained with a small value of σ, and then
by modifying it by considering spectrogram approximations
obtained with larger values of σ. To clarify this, let us
assume that σ = (σ1, . . . , σR) is a collection of window
lengths ranked in increasing order. One considers as initial
approximation sσ1

app[n, .], associated with the error Eσ1 , and
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Fig. 4: (a): spectrogram approximation sapp of the signal of
Fig. 2, obtained with Algorithm 2; (b): from top to bottom :
coefficients corresponding to the red line in (a), corresponding
σ values and approximation error

supported at time index n on the set

Mσ1
n =

{
Iσ1
q , s.t. q ∈ Sσ1

1,n, I
σ1
q

⋃
Iσ1

q′ , s.t.(q, q
′) ∈ Sσ1

2,n

}
(22)

For any other σi, Mσi
n is defined the same way. The idea we

use to select locally the best window length is to investigate
whether using a larger σi locally decreases the approximation
error. If this is actually the case, the approximation spectro-
gram is changed accordingly, following the framework detailed
in Algorithm 2.

Algorithm 2: WINDOW ADAPTED SPECTROGRAM
APPROXIMATION

Input: σ = (σ1, . . . , σR), (sσi , Eσi ,Mσi
n )i=1,...,R

1: Initialization: sapp = sσ1 , Eapp = Eσ1 ,
2: for i = 1, . . . , R− 1 do
3: for n ∈ J0, N − 1K do
4: C =Mσi

n

5: for X ∈Mσi+1
n do

6: for Y ∈Mσi
n do

7: if I = X
⋂
Y ̸= ∅ then

8: if min
k∈I

Eσi+1 [n, k] < min
k∈I

Eapp[n, k] then
9: Eapp[n, k] = Eσi+1 [n, k], for k ∈ X

⋃
Y

10: sapp[n, k] = sσi+1 [n, k], for k ∈ X
⋃
Y

11: C = {C \ Y,X}
12: end if
13: end if
14: end for
15: if X

⋂
(

⋃
Y ∈Mσi

n

Y ) = ∅ then

16: Eapp[n, k] = Eσi+1 [n, k], for k ∈ X
17: sapp[n, k] = sσi+1 [n, k], for k ∈ X
18: C = {C,X}
19: end if
20: end for
21: Mσi+1

n ← C
22: end for
23: end for
Output: sapp, Eapp, (MσR

n )n=0,...,N−1.

In Fig. 4 (a), we display sapp obtained as the output of
Algorithm 2 applied to the three mode signal of Fig. 2, and, in
Fig. 4 (b), the coefficients corresponding to the red lines in Fig.
4 (a), the corresponding optimal σ value and the approximation
error. As expected, the algorithm selects a small value of σ
for the isolated mode and finds an appropriate value of that
parameter to well separate the two lower frequency parallel
linear chirps.

C. Ridge Portions Detection

Once the approximation of the spectrogram sapp is com-
puted, the next step towards IF estimation is ridge detection
(RD), for which several techniques have been developed using
the idea that the ridges correspond to local maxima along the
frequency axis (LMFs) of the spectrogram. Indeed, as shown
in [24], [25], the locations of the LMFs are estimates of the
IFs of the modes, the quality of estimation depending on the
noise level and on the length of the analysis window. A very
important aspect is that RD should perform well in noisy
situations, and, inspired by the work of [6], we remark that
the ridge associated with one mode may be interrupted due
to noise, mode interference or mode crossing. As a result, it
is more relevant to use the concept of relevant ridge portions
(RRPs) associated with a mode, rather than a single ridge.

In [6], RRPs consisted in LMFs above the noise level that
were connected by means of the modulation operator used in
the reassignment of the STFT. In our context, the spectrogram
approximation at each time n is the sum of Gaussian functions
associated with different values of σ, and whose maxima are
above the noise threshold associated with the corresponding
σ. So, every LMF in the spectrogram approximation is mean-
ingful, and RD can be directly performed on that set of points.

Our approach to build the first RRP in the TF plane, consists
in first picking a time index n0, and then finding c1[n0] =
argmaxk sapp[n0, k]. The first candidate for the ridge portion
is then defined as:

max
c1

∑
n∈[n−

0 ,n+
0 ]

sapp[n, c1[n]], s.t.
{
|c1[n+ 1]− c1[n]| ≤ Bf ,
sapp[n, c1[n]] is a LMF

(23)
where Bf is a jump parameter, fixed a priori, that corresponds
to the largest frequency modulation assumed on the modes,
and the interval [n−0 , n

+
0 ] corresponds to the lower and upper

bound where the conditions in (23) are no longer satisfied,
and starting from n0. Since the choice of n0 is arbitrary,
the first ridge portion is defined by considering not only the
most energetic ridge portion as described above, but the most
energetic one among all possible ridge portions starting from
M0 random initializations. Once this ridge portion is built, the
set of corresponding LMFs are removed from the set of LMFs
that can be used to build the next ridge portions. The process
is then iterated until the length of the ridge portions is below a
minimal length lmin. An illustration of the procedure is given
Fig. 5 (a) and (b) for an input signal-to-noise ratios (SNR) of
20 and 0 dB, respectively. It can be observed that for an SNR
of 20 dB, the algorithm extracts a ridge associated with each
mode, while for an SNR of 0 dB, a mode is associated with a
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Fig. 5: (a): spectrogram approximation of a three mode signal
(input SNR 20 dB) along with the associated ridge portions
(lmin = 10); (b): same as (a) but for an input SNR of 0 dB.

series of ridge portions, most of which remain relevant even
at that high noise level.

D. Spline Fitting

It is important to note that up to this point, neither in the
definition of the spectrogram approximation nor in the con-
struction of the ridge portions, we have made any assumptions
about the number of modes present in the signal. However, to
build IF estimations based on the detected ridge portions, we
now assume that we want to compute P IF estimations, each
of which is associated with a mode.

An important aspect is that our IF estimator should be able
to adapt to the case of crossing modes. It is well-known
that IF estimation based on RD in the TF plane analysis
maybe not relevant in the case of mode crossing. For that
purpose, chirplet transform (CT) [26] offers the possibility to
separate modes with cross-over frequency by modifying the
STFT using the chirp rate (CR) as an extra parameter. To
improve the localization of modes making up a MCS in the
time-frequency-CR domain, the reassignment of the modulus
of CT was proposed in [27] and then further detailed in [28].
However, such approaches are time consuming and sensitive
to noise, as we will demonstrate in the numerical section.

Our goal is to propose an IF estimator that outperforms CT-
based approaches, recalled in the next section, when the signal
contains modes with cross-over frequencies. We first gather the
ridge portions together, starting with the set I0 of time indices
corresponding to the longest interval where P ridge portions
coexist. Denoting by (n, cp[n])n∈I0

the pth ridge portion, we
construct an initial spline approximation of the the P modes
on I0 by minimizing:

ψ0
p := argmin

φ

∑
n∈I0

(1− r)
(
cp[n]− φ(

n

N
)
)2

+ r|φ(2)(
n

N
)|2,

(24)
with r ∈ [0, 1]. Then, let I1 be the set of time indices
corresponding to the second longest time interval where P
ridge portions coexist. To take into account potential mode
crossings in the gathering of ridge portions, we consider any
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Fig. 6: (a): SA-IF estimation of a three mode signal (input
SNR 20 dB); (b): same as (a) but for a three mode signal with
cross-over frequencies.

permutation m of J1, P K to compute:

ψ1
m,p := argmin

φ
(1− r)

[∑
n∈I0

(
cp[n]− φ(

n

N
)
)2

+
∑
n∈I1

(
cm[p][n]− φ(

n

N
)
)2

]
+ r

∑
n∈I0

⋃
I1

|φ(2)(
n

N
)|2.

(25)
and then the spline approximation we consider on I0

⋃
I1, is

defined by:

ψ1
p := argmin

m

∑
n∈I0

⋃
I1

|(ψ1
m,p)

(2)(
n

N
)|2. (26)

Each of the P modes is thus associated with a set of two
ridge portions and the process is iterated considering smaller
interval length on which P modes coexist. At the end of this
process, we obtain a set of P IF estimates which are denoted
by (ψp)p=1,...,P hereafter. In the remainder of this paper, we
refer to this technique as SA-IF estimation (for ”spectrogram
approximation instantaneous frequency” estimation). An illus-
tration of the proposed SA-IF estimation is shown in Fig. 6
(a) for the case of two close modes plus a strongly frequency
modulated one, and for an input SNR of 20 dB. Fig. 6 (b) then
illustrates that SA-IF estimation technique perfectly handles
modes with crossing over frequencies. A more systematic
analysis of the behavior of this new IF estimation technique
is carried out in Sec. V, along with a comparison with state-
of-the-art methods.

IV. OTHER STATE-OF-THE-ART METHODS FOR IF
ESTIMATION

In this section, we introduce different recent IF estimation
techniques, based either on synchrosqueezing or chirplet trans-
forms.

A. Synchrosqueezing Transform-Based Methods

Synchrosqueezing transform was originally proposed within
the wavelet context [29], [30] and adapted to the STFT setting
[31], [7]. In that latter context, it aims at “sharpening” the
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STFT by vertically reassigning the coefficients above the noise
threshold (defined in see Sec. III-A) through:

Thσ,N

f̃
(t, ω) :=

1

hσ(0)

∫
{η,|V hσ

f̃
(t,η)|≥3γ̂}

V hσ

f̃
(t, η)δ(ω − ω[N ]

f̃
(t, η))dη,

(27)

so that the reassigned transform is closer to the ideal TF
signature. In that context, ω[N ]

f̃
(t, η) is called the N -th order

local IF estimation at time t and frequency η, and is built
assuming the phases of the modes making up the signal locally
behave as a polynomial of order N [14]. ω[N ]

f̃
(t, η) has been

proven to well approximate the frequency of the pth mode in
the TF plane when (t, η) is close to (t, ϕ′p(t)) and when that
mode is well separated from the other modes [14]. In what
follows, FSSTN denotes the synchrosqueezing transform of
order N . The case of N = 1 was addressed in [31], [7],
N = 2 in [12], and N ≥ 3 was discussed in [14], giving
birth to the so-called high-order synchrosqueezing transform.
The computation of ω[N ]

f̃
(t, η) can be carried out using the

following two matrices of STFTs [32] (we omit (t, η) in the
definition of the matrix for simplicity):

D[N ](t, η) =


V hσ

f̃
V thσ

f̃
· · · V tN−1hσ

f̃

V thσ

f̃
V t2hσ

f̃
· · · V tNhσ

f̃
...

...
. . .

...
V tN−1hσ

f̃
V tNhσ

f̃
· · · V t2(N−1)hσ

f̃

 ,
and

U [N ](t, η) =


0 V thσ

f̃
· · · V tN−1hσ

f̃

V hσ

f̃
V t2hσ

f̃
· · · V tNhσ

f̃
...

...
. . .

...

(N − 1)V tN−2hσ

f̃
V tNhσ

f̃
· · · V t2(N−1)f̃

f̃

 ,

where V tnhσ

f̃
stands for the STFT with window tnhσ(·). With

these notations one has [32]:

ω̃
[N ]

f̃
(t, η) = η − 1

2π
ℑ
{
det(U [N ](t, η))

det(D[N ](t, η))

}
. (28)

To compute the IF estimates in practice, one first performs
RD on FSSTN to obtain a first set of crude IF estimates
(t, ωr,N

p (t))p=1,...,P , on the grid (the superscript r standing
for ridges, and N denoting the order of the synchrosqueezing
transform), the final off-grid IF estimates being obtained as:

(ω̃
[N ]

f̃
(t, ωr,N

p (t)))p=1,...,P . (29)

The quality of the IF estimation is thus tightly related to the
quality of the ridge detection, and is not adapted to the case
of cross-over frequencies. This will be further discussed in
Section V. Finally note that FSSTs can either be computed
using a single window, often associated with the minimal
Rényi entropy [14], or using different time dependent windows
[33], but cannot cope with a window whose length varying
both in time in frequency, contrary to the novel IF estimation
technique we propose.

B. Methods Based on Chirplet Transform and Ressignment

The chirplet transform (CT) is a generalization of the STFT
and is defined for a signal f in L1(R)

⋂
L2(R), the window

hσ , the chirp rate β in R, and η in R+, by:

Chσ

f (t, η, β) :=

∫
R
f(τ)h(τ − t)e−i2π(η(τ−t)+β

(τ−t)2

2 )dτ.

(30)
The extra chirp rate (CR) parameter β enables to separate
modes with cross-over frequencies, provided the noise level is
relatively low. Such a separation, however, requires the defini-
tion of a ridge detector in the three-dimensional space indexed
by time, frequency and CR. Going further, the reassignment
of the modulus of CT was proposed in [27], a mathematical
analysis being available in [28]. For the sake of consistency,
we just recall how reassignment is performed in that context.
Assume f is a local linear chirp namely, for τ in the vicinity
of t, f(τ) = A(t)ei2π(ϕ(t)+(τ−t)ϕ′(t)+

(τ−t)2

2 ϕ′′(t)). One can
easily show that:

Chσ

f (t, η, β) =
f(t)√

1 + iσ2(β − ϕ′′(t))
e
−π

σ2(η−ϕ′(t))2

1+iσ2(β−ϕ′′(t)) .

(31)
Differentiating (31) with respect to η, and remarking that
∂ηC

hσ

f = −2iπCthσ

f , a simple calculation leads to (we omit
the variable (t, η, β) for the sake of simplicity):

ℜ

{
∂ηC

hσ

f

Chσ

f

}
= − 2πσ2(η − ϕ′(t))

1 + σ4(β − ϕ′′(t))2

⇔ ϕ′(t) = η +
1 + σ4(β − ϕ′′(t))2

σ2
ℑ

{
Cthσ

f

Chσ

f

}
.

(32)

Differentiating twice (31) with respect to η, one easily obtains:

∂2ηC
hσ

f = −
2πσ2Chσ

f

1 + iσ2(β − ϕ′′(t))
+

(
∂ηC

hσ

f

)2

Chσ

f

⇔ ϕ′′(t) = β +
1

2π
ℑ

 (Chσ

f )2(
Cthσ

f

)2

− Ct2hσ

f Chσ

f

 .

The reassigned CR, which equals ϕ′′(t) in that case is thus

β̃CT (t, η, β) = β +
1

2π
ℑ

 (Chσ

f )2(
Cthσ

f

)2

− Ct2hσ

f Chσ

f

 , (33)

Then, replacing β by this expression in (32), one obtains

ϕ′(t) = η +
1

σ2
ℑ

{
Cthσ

f (t, η, β̃)

Chσ

f (t, η, β̃)

}
,

and the frequency reassignment operator reads, in that case:

ω̃CT (t, η, β) = η + ℑ

{
Cthσ

f (t, η, β̃)

Chσ

f (t, η, β̃)

}
, (34)

Finally, the modulus of CT is reassigned through:

Dhσ

f (t, η, β) :=
1

hσ(0)

∫
R+×R

|Chσ

f (t, v, λ)|2

δ(η − ω̃CT (t, v, λ), β − β̃CT (t, v, λ))dvdλ,

(35)



9

0 0.2 0.4 0.6 0.8

time

0

200

400

600

800

1000

fr
e

q
u

e
n

c
y

(a)

0 0.2 0.4 0.6 0.8

time

0

200

400

600

800

1000

fr
e

q
u

e
n

c
y

(b)

0 0.2 0.4 0.6 0.8

time

0

200

400

600

800

1000

fr
e

q
u

e
n

c
y

(c)

0 0.2 0.4 0.6 0.8

time

0

200

400

600

800

1000

fr
e

q
u

e
n

c
y

(d)

Fig. 7: (a): FSST2 based on STFT computed with optimal window length given by Rényi entropy with the first 3 most energetic
ridges superimposed; (b): same as (a) but for FSST3; (c): same as (a) but for FSST4; (d): ridge portions used in RRP-RD
ridge detector

where δ is the bidimensional Dirac distribution.
To obtain IF estimates, the approach used in [27] consists

of computing CT ridges, corresponding to the P curves
(t, ωr,CT

p (t), βr,CT
p (t))p=1,...,P , which are defined on the grid

of CT (the superscripts r, CT standing for ridge, and chirplet
transform), while the final IF estimations off-grid are obtained
as:

(β̃CT (t, ωr,CT
p (t), βr,CT

p (t)),

ω̃CT (t, ωr,CT
p (t), βr,CT

p (t)))p=1,...,P .
(36)

V. RESULTS

In this section, we analyze the quality of the technique for
IF estimation, called SA-IF, we propose by comparing it with
state-of-the-art techniques, in the case of close mode, mode
with strong frequency modulation or crossing modes.

A. IF Estimation in the Presence of Interference and Strong
Frequency Modulation

In this section, our goal is first to compare the relevance of
the ridge portions computed on the spectrogram approximation
compared with classical RD based on the synchrosqueezing
transforms or ridge portions used in RRP-RD technique [6].
We believe that this will help to understand why SA-IF is
ultimately better.

To illustrate the limitations of techniques based on syn-
chrosqueezing, we again consider the signal first introduced
in Fig. 2, with input SNR 20 dB, and perform different
synchrosqueezing transforms on the STFT computed with the
window length associated with the minimization of the Rényi
entropy on the spectrogram with α = 3 [14]. For each of
the computed transforms, we extract the P most energetic
ridges from these transforms, and superimpose them on Fig.
7 (a) to (c) to the synchrosqueezing transforms. As expected,
it is necessary to increase the order of the synchrosqueezing
transforms to capture the oscillations in the phase of the upper
mode, and using estimate (29) with N = 2 or 3 will inevitably
lead to inaccurate IF estimate for that mode. Comparing with
Fig. 5 (a), only RD detection based on FFST4 seems to be
able to compete with the approach we propose, but we will see
hereafter that the former technique is very sensitive to noise.
Finally, in Fig. 7 (d), we also plot the RRPs used in RRD-RD

technique [6], computed on the same STFT as the one used
in synchrosqueezing transforms. In that figure, we observe
some time interference in the upper mode, and this results
in multiple RRPs associated with that mode. This causes the
failure of RRP-RD since this configuration is interpreted as
the crossing of several modes, which is not handled by the
algorithm for IF estimation proposed in [6],

To evaluate more precisely the benefits of SA-IF technique,
we compare it with the different techniques based on syn-
chrosqueezing transforms for the signal of Fig. 2 and for
different SNRs. As a measure of the quality of IF estimation,
we consider for each p the following error:

Er(p) =
1

N

N−1∑
n=0

|ϕ′p(
n

N
)− ψp[n]|, (37)

where ψp[n] an IF estimate at time index n. The results are
depicted in Fig. 8, for the three mode signal of Fig. 2 and,
for each input SNR, we consider 10 realizations of the noise.
Looking at the results of Fig. 8 (a) and (b), for the two linear
chirps performance of SA-IF are similar to the IF estimation
based on FSST2, which is known to be optimal for that type
of modes. We shall also remark that, as expected, considering
the reassignment operator on the ridges of FSST2 improves
the results for that type of mode. Finally, it is important to
note that the window length minimizing the Rényi entropy
well separates the two linear chirps which explains why IF
based on FFST2 works well in that situation, contrary to those
based on FFST3 or FFST4, which are much more sensitive to
noise. Regarding the oscillatory mode, the choice made on the
window length creates time interference in some part of the
signal, and the local linear chirp approximation used in FFST2
is no longer valid. Therefore, for such a mode and at very low
noise level (around SNR equal to 20 dB), IF based on FFST3
or FFST4 behave better than FSST2. But, as the noise level
increases, taking into account high order phase oscillations is
no longer relevant. In any case, IF estimations based on FSSTs
are not efficient for that type of mode compared with SA-IF,
which is associated with a remarkably small estimation error
regardless of the noise level.
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Fig. 8: (a): IF estimation errors with respect to input SNR for the lowest frequency mode of Fig. 2;(b): same as (a) but for the
other linear chirp; (c): same as (a) but for the mode with oscillatory phase.The results are averaged over 10 noise realizations
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Fig. 9: (a): ridges of CT for the signal of Fig. 6 (b); (b): reassigned operators on the ridges of CT; (c): IF estimations ω̃CT on
the ridges of CT and ωr,CT

p for p = 1, . . . , 3; (d): zoom in around the crossing of the two linear chirps

B. IF Estimation in the Presence of Crossing Modes and
Strong Frequency Modulation

In this section we investigate the performance of SA-IF
in the presence of crossing modes by comparing it with the
techniques based on CT. To this end, we consider the signal
of Fig. 6 (b) for which we already showed the nice behavior
of SA-IF for a particular noise level.

To start with, we recall why mode separation can be
performed using CT on that simple example, highlighting the
limitation of such a technique. A first constraint is that the
magnitude of CR can be very high for some modes: in the
studied example, the magnitude of ϕ′′ attains a maximum
value of 5000 for the mode with oscillatory phase. Thus,
the range for β must include the interval [−5000, 5000]. To
keep a reasonable tensor size for the CT representation, the
discretization along the CR axis has to be chosen appropriately.
Then, when CT is used for IF estimation based on ridge
detection, one needs to properly define a three dimensional
ridge detector. For that purpose, once a ridge is extracted
using the classical ridge detector based on peeling algorithm
[34], one removes a neighborhood of this ridge in the time-
frequency-CR three-dimensional space before extracting the
following ridges. However, the size of this neighborhood, a
frequency-CR rectangle at each time index n, is challenging
to define, and depends on how close the CR of the different
modes are. However, such an information is not available a
priori. Furthermore, similarly to what happens in the TF plane
where close modes result in oscillatory ridges, two modes with

close CR lead to oscillatory ridges in the time-frequency-CR
space. Such oscillations can end up in mode mixing, and all
the more so that noise is present in the signal.

To illustrate this, in Fig. 9 (a), in the time-frequency-CR
space, we plot the three-ridges associated with the studied
signal (namely (t, ωr,CT

p , βr,CT
p (t)) introduced before Eq.

(36)), with input SNR 20 dB the window hσ being still
such that σ minimizes the Rényi entropy of the spectro-
gram. Also, we consider as IF estimates the values on these
ridges of the reassignment operators (see Eq. (36)), in Fig.
9 (b). One clearly see that, oscillations are present in the
detected ridges in the vicinity of the crossing. In Fig. 9
(c), we plot the different TF curves (t, ωr,CT

p )p=1,...,P and
(t, ω̃CT (t, ωr,CT

p (t), βr,CT
p (t)))p=1,...,P , exhibiting apparently

no significant difference, but zooming in the crossing location
in Fig. 8 (d), one observes a staircase effect when the IF
estimation is performed using the ridges of the CT, as a result
of frequency discretization, and that to consider the reassigned
operator on these ridges does not lead to an improved IF
estimation. It is worth finally noting that, while RD and
subsequent IF estimation succeed in this particular example,
as shown later, this technique lacks robustness to noise.

To further assess the quality of IF estimation under varying
noise levels for the signal in Fig. 6 (b), we compare SA-IF
with methods based on CT ridges and reassignment operators
computed on these ridges. To make this comparison possible,
we only compute the IF estimations when the RD they are
based on is successful. To do so, we consider that, for a
given IF estimation technique, RD has failed when the error
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Fig. 10: (a): IF estimation results with the different techniques for the first linear chirp; (b): same as (a) but for the second
linear chirp; (c): same as (a) but for the upper mode; (d): proportion relevant IF estimations. In all these figures, the results
are averaged over 20 noise realizations.

defined in (37) is larger than 40 for one of the mode at least.
This means that the IF estimation error for given time n is
larger than 40 Hz, which is huge compared to the error when
the RD actually works fine. The IF estimation results are
displayed in Fig. 10 (a) to (c). For the two crossing linear
chirps, the three tested techniques exhibit similar performance
(see Fig. 10 (a) and (b)), since a difference of 1 Hz in the
estimation is negligible given the 1 Hz frequency sampling
step. However, this similar behavior occurs only when RD has
been successful, which is the case in only 40 % of the tested
case at 10 dB for the techniques based on CT ridges. On the
contrary, the ridges based on spectrogram approximation is
always successful for the studied noise levels. Finally, when
one considers the upper mode we see that techniques based on
CT ridges are less accurate than SA-IF when ridge detection
is successful.

VI. CONCLUSION

In this paper, we proposed a novel technique for instanta-
neous frequency estimation. Our approach first locally deter-
mines in the time-frequency plane an optimal window length
for spectrogram approximation by minimizing interference in
the case of close modes, and limiting frequency modulation
effects in the representation of isolated modes. We then
adapted an existing ridge detector to this optimized time-
frequency representation and introduced a new IF estimation
method based on ridge detector outputs and spline fitting.
The effectiveness of our proposed estimator was evaluated on
signals with close, crossing, and highly modulated frequency
modes and was compared against state-of-the-art techniques.
The results clearly demonstrate the advantages of our ap-
proach. For future work, the computational efficiency of our
method could be significantly improved by parallelizing the
spectrogram approximation, as each time index is independent
of its neighbors. Once this optimization is achieved, we plan
to explore its application to voice signal processing.
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