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OBJECTIVES
We present a new convex formulation for the pro-
blem of recovering lines in degraded images. Follo-
wing the recent paradigm of super-resolution, we
formulate a dedicated atomic norm penalty and
solve this optimization problem by a primal–dual
algorithm. Then, a spectral estimation method re-
covers the line parameters, with subpixel accuracy.

ATOMIC NORM FRAMEWORK
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Consider the dictionary

A = {a(f,�) 2 C|I|
, f 2 [0, 1],� 2 [0, 2⇡)},

in which the atoms are the vectors of components
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, i 2 I , if � = 0. The atomic norm writes:

kzkA = inf
c
0
k>0,f 0

k,�
0
k

(
X

k

c
0

k
: z =

X

k

c
0

k
a(f 0

k
,�

0

k
)

)
.

Theorem 1 [Caratheodory]. Let z = (zn)
N�1
n=�N+1 be

a vector with Hermitian symmetry z�n = z
⇤

n
. z is

a positive combination of K 6 N + 1 atoms a(fk)
if and only if TN (z+) < 0 and of rank K, where
z+ = (z0, . . . , zN�1) and TN is the Toeplitz operator
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Moreover, this decomposition is unique, if K 6 N .

Proposition 1. The atomic norm kzkA can be cha-
racterized by this semidefinite program SDP(z) [2]:
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MODEL OF NOISY BLURRED LINES

A sum of K perfect lines of infinite length, with
angle ✓k 2 (�⇡/2,⇡/2], amplitude ↵k > 0, and off-
set ⌘k 2 R, is defined as the distribution
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The image observed b
] of size W ⇥H is obtained by

the convolution of x] with a blur function �, follo-
wing by a sampling with unit step �: b][n1, n2] =
(x] ⇤ �)(n1, n2). The point spread function � is se-
parable, that is x

] ⇤ � can be obtained by a first ho-
rizontal convolution u

] = x
] ⇤ '1, where '1 is W -

periodic and bandlimited, that is its Fourier coeffi-
cients ĝ[m] are zero for |m| � (W � 1)/1 = M + 1,
so û

][m,n2] = ĝ[m]x̂][m,n2]; and then a second ver-
tical convolution with '2, such as the discrete fil-
ter h[n] = ('2 ⇤ sinc)[n] has compact support, gives
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SUPER-RESOLUTION AND REGULARIZATION OF LINES
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(Observation operator)
H = MF�1

1 A

A : blur operator
F1 : horiz. Fourier operator
M : inpainting operator
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x̂[0, n2] = x̂[0, 0] 6 c,
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(x̂[m, :], q[m, :]) < 0,

TM+1(x̂[:, n2]) < 0,

The problem can be rewritten in this way:

X̃ = argmin
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with F (X) = 1
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F
, X = (x̂, q), rF a �–

Lipschitz gradient, a proximable indicator G = ◆B

where B are the two first boundary constraints, and
N = M + 1 + HS linear composite terms, where
Hi = ◆C with C the cone of semidefinite positive ma-
trices, and Li 2 {L(1)

m , L
(2)
n2 }, defined by L
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L denotes the concatenation of the Li operators.

Let ⌧ > 0 and � > 0 such that 1
⌧
� �kLk2 > �

2 .

Algorithm: Primal–dual splitting method [Condat]

Input: The blurred and noisy data image y

Output: x̃ solution of the optimization problem
1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: Xn+1 = prox

⌧G
(Xn�⌧rF (Xn)�⌧

P
i
L
⇤

i
⇠i,n),

4: for i = 0 to N � 1 do
5: ⇠i,n+1 = prox

�H
⇤
i
(⇠i,n + �Li(2Xn+1 �Xn)),

6: end for
7: end for

SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

Let be dk 2 C, fk 2 [�1/2, 1/2), ⇣k = e
j2⇡fk and
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The annihilating polynomial filter is defined by:
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∂ From PK(z), compute h by a SVD. Form H

whose roots give access to the frequencies fk.
∑ Since z = Ud with U = (a(f1), · · · , a(fK)),

find amplitudes by LS: d = (UH
U)�1

U
H
z.

Procedure for retrieving the line parameters

∂ For each column x̃[m, :] compute {f̃m,k}k by ∂

∑ For each column x̃[m, :] compute {d̃m,k}k by ∑

∏ {fm,k}m = { tan ✓km

W
}m lin. regression ! {✓̃k}

π ↵̃m,k = |d̃m,k| cos(✓̃k) and {↵k}k = E[{↵̃m,k}m]

∫ d̃m,k/|d̃m,k| = (e�j2⇡
⌘k
W )m ! {⌘k}k by ∂

This procedure enables to estimate the line parame-
ters from the solution x̃ of the optimization problem:
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