CONVEX SUPER-RESOLUTION DETECTION OF LINES IN IMAGES

KÉVIN POLISANO, MARIANNE CLAUSEL, VALÉRIE PERRIER AND LAURENT CONDAT

contact mail : kevin.polisano@imag.fr

OBJECTIVES

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and solve this optimization problem by a primal–dual algorithm. Then, a spectral estimation method recovers the line parameters, with subpixel accuracy.

Let $z \in \mathbb{C}^N$ be a vector such as $z = \sum_{k=1}^K c_k a(\omega_k)$ with $c_k \in \mathbb{C}$ and *atoms* $a(\omega) \in \mathbb{C}^N$ continuously indexed in a dictionary A by a parameter ω in a compact set Ω . The atomic norm, which enforces sparsity with respect this set *A*, is defined as

in which the *atoms* are the vectors of components $[a(f, \phi)]_i = e^{j(2\pi f i + \phi)}, i \in I$, and simply $[a(f)]_i =$ $e^{j2\pi f i}, i \in I$, if $\phi = 0$. The atomic norm writes:

ATOMIC NORM FRAMEWORK

$$
||z||_{\mathcal{A}} = \inf_{c'_k,\omega'_k} \left\{ \sum_k |c'_k| : z = \sum_k c'_k a(\omega'_k) \right\}.
$$

Proposition 1. The atomic norm $||z||_A$ can be characterized by this semidefinite program SDP(*z*) [2]:

Consider the dictionary

 $\mathcal{A} = \{a(f, \phi) \in \mathbb{C}^{|I|}, f \in [0, 1], \phi \in [0, 2\pi)\},\$

A sum of *K* perfect lines of infinite length, with angle $\theta_k \in (-\pi/2, \pi/2]$, amplitude $\alpha_k > 0$, and offset $\eta_k \in \mathbb{R}$, is defined as the distribution

$$
||z||_{\mathcal{A}} = \inf_{c'_k > 0, f'_k, \phi'_k} \left\{ \sum_k c'_k : z = \sum_k c'_k a(f'_k, \phi'_k) \right\}.
$$

Theorem 1 [Caratheodory]. Let $z = (z_n)_{n=-N+1}^{N-1}$ be a vector with Hermitian symmetry $z_{-n} = z_n^*$. *z* is a positive combination of $K \le N + 1$ atoms $a(f_k)$ if and only if $\mathbf{T}_N(z_+) \geq 0$ and of rank *K*, where $z_+ = (z_0, \ldots, z_{N-1})$ and \mathbf{T}_N is the Toeplitz operator

$$
\mathbf{T}_N(z_+) = \begin{pmatrix} z_0 & z_1^* & \cdots & z_{N-1}^* \\ z_1 & z_0 & \cdots & z_{N-2}^* \\ \vdots & \vdots & \ddots & \vdots \\ z_{N-1} & z_{N-2} & \cdots & z_0 \end{pmatrix}.
$$

Moreover, this decomposition is unique, if $K \le N$.

$$
||z||_{\mathcal{A}} = \min_{q \in \mathbb{C}^N} \left\{ q_0 : \mathbf{T}'_N(z, q) = \begin{pmatrix} \mathbf{T}_N(q) & z \\ z^* & q_0 \end{pmatrix} \succcurlyeq 0 \right\}.
$$

$$
\bullet l_{n_2}^{\sharp} = \hat{x}^{\sharp}[:, n_2] = \sum_{k=1}^K c_k a(f_{n_2,k})
$$

with $F(X) = \frac{1}{2} \|\mathbf{H}\hat{x} - y\|_F^2$, $X = (\hat{x}, q)$, ∇F a β Lipschitz gradient, a proximable indicator $G = \iota_B$ where *B* are the two first boundary constraints, and $N = M + 1 + H_S$ linear composite terms, where $H_i = \iota_{\mathcal{C}}$ with \mathcal{C} the cone of semidefinite positive matrices, and $L_i \in \{L_m^{(1)}, L_{n_2}^{(2)}\}$, defined by $L_m^{(1)}$ $_m^{(1)}(X) =$ $\mathbf{T}'_{H_S}(\hat{x}[m,:],q[m,:])$ and $L_{n_2}^{(2)}(X) = \mathbf{T}_{M+1}(\hat{x}[:,n_2]).$ L denotes the concatenation of the *Lⁱ* operators.

Let $\tau > 0$ and $\sigma > 0$ such that $\frac{1}{\tau} - \sigma ||\mathbf{L}||^2 \geqslant \frac{\beta}{2}.$

MODEL OF NOISY BLURRED LINES

The **annihilating polynomial filter** is defined by: $H(\zeta) = \prod_{l=1}^{K} (\zeta - \zeta_l) = \sum_{l=0}^{K} h_l \zeta^{K-l}$ with $h_0 = 1$,

The image observed b^{\sharp} of size $W \times H$ is obtained by the convolution of x^{\sharp} with a blur function ϕ , following by a sampling with unit step Δ : $b^{\sharp}[n_1, n_2] =$ $(x^{\sharp} * \phi)(n_1, n_2)$. The point spread function ϕ is separable, that is $x^{\sharp} * \phi$ can be obtained by a first horizontal convolution $u^{\sharp} = x^{\sharp} * \varphi_1$, where φ_1 is *W*periodic and bandlimited, that is its Fourier coefficients $\hat{g}[m]$ are zero for $|m| \geq (W-1)/1 = M + 1$, so $\hat{u}^\sharp[m,n_2]=\hat{g}[m]\hat{x}^\sharp[m,n_2]$; and then a second vertical convolution with φ_2 , such as the discrete filter $h[n]=(\varphi_2 * \text{sinc})[n]$ has compact support, gives $\hat{b}^\sharp[m, :] = \hat{u}^\sharp[m, :] * h = \hat{g}[m]\hat{x}[m, :] * h$, hence $\mathbf{A}\hat{x}^\sharp = \hat{b}^\sharp$

[∂] For each column *^x*˜[*m,* :] compute *{* ˜*fm,k}^k* by [∂] **2** For each column $\tilde{x}[m, :]$ compute $\{\tilde{d}_{m,k}\}_k$ by **2** ${3}$ ${f_{m,k}}_m = { \frac{\tan \theta_k m}{W} }_m \ln \text{.}$ regression $\rightarrow { \tilde{\theta}_k }$ $\tilde{\mathbf{\Phi}}$ $\tilde{\alpha}_{m,k} = |\tilde{d}_{m,k}| \cos(\tilde{\theta}_k)$ and $\{\alpha_k\}_k = \mathbb{E}[\{\tilde{\alpha}_{m,k}\}_m]$ **∂** $\tilde{d}_{m,k}/|\tilde{d}_{m,k}| = (e^{-j2\pi \frac{\eta_k}{W}})^m \rightarrow {\eta_k}_k$ by **○**

This procedure enables to estimate the line parameters from the solution \tilde{x} of the optimization problem:

SUPER-RESOLUTION AND REGULARIZATION OF LINES

 \hat{x}^{\sharp} *y*

The problem can be rewritten in this way:

 \hat{x}^{\sharp}

$$
\tilde{X} = \underset{X \in \mathcal{H}}{\arg \min} \left\{ F(X) + G(X) + \sum_{i=0}^{N-1} H_i(L_i(X)) \right\}
$$

 \hat{x}^{\sharp} **A** \hat{x}

Algorithm: Primal–dual splitting method [Condat]

Input: The blurred and noisy data image *y* **Output:** \tilde{x} solution of the optimization problem 1: Initialize all primal and dual variables to zero 2: **for** $n = 1$ **to** Number of iterations **do** 3: $X_{n+1} = \text{prox}_{\tau G}(X_n - \tau \nabla F(X_n) - \tau \sum_i L_i^* \xi_{i,n}),$ 4: **for** $i = 0$ **to** $N - 1$ **do** 5: $\xi_{i,n+1} = \text{prox}_{\sigma H_i^*} (\xi_{i,n} + \sigma L_i (2X_{n+1} - X_n)),$ 6: **end for** 7: **end for**

SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

Let be $d_k \in \mathbb{C}$, $f_k \in [-1/2, 1/2)$, $\zeta_k = e^{j2\pi f_k}$ and

K

$$
z_i = \sum_{k=1} d_k \left(e^{j2\pi f_k} \right)^i, \quad \forall i = 0, \dots, |I| - 1,
$$

 $\mathbf{P}_K(z)h =$ $\sqrt{2}$ $\overline{}$ z_K \cdots z_0 . . $\begin{array}{ccc} . & . & . & . \ . & . & . & . \ . & . & . & . \ . & . & . & . \ . & . & . & . \ . & . & . & . \ \end{array}$. . $z|I|-1$ \cdots $z|I|-K-1$ \setminus $\Big\}$ $\sqrt{2}$ $\overline{}$ h_0 . . . h_K \setminus $\Big\} =$ $\sqrt{2}$ $\overline{}$ 0 . . . 0 \setminus $\Big\}$ ∂ From P*K*(*z*), compute *h* by a SVD. Form *H* whose roots give access to the frequencies *fk*. **2** Since $z = \mathbf{U}d$ with $\mathbf{U} = (a(f_1), \cdots, a(f_K))$, find amplitudes by LS: $d = (\mathbf{U}^{\mathbf{H}}\mathbf{U})^{-1}\mathbf{U}^{\mathbf{H}}z$.

Procedure for retrieving the line parameters

 \bullet $t_{\tau_i}^{\sharp}$ $_{m}^{\sharp}=\hat{x}^{\sharp}[m,:]=\sum_{k=1}^{K}c_{k}a(f_{m,k},\phi_{m,k})^{T}$ with amplitude *c^k* = α_k^+ $\cos\theta_k$, phase $\phi_{m,k} = -\frac{2\pi\eta_k m}{W}$ $\frac{W}{W}$, frequency $f_{n_2,k} =$ $\tan \theta_k \, n_2 - \eta_k$ $\frac{W}{W}$, $f_{m,k} =$ $\tan \theta_k m$ $\frac{16}{W}$. • $||l_{n_2}^{\sharp}||_A = \sum_{k=1}^{K} c_k = \hat{x}^{\sharp}[0, n_2]$ by **Theorem 1**. • $||t_m^{\sharp}||_{\mathcal{A}} = SDP(t_m^{\sharp}) \leqslant \sum_{k=1}^{K} c_k$ by **Proposition 1**.

REFERENCES

[1] K. Polisano *et al.*, Convex super-resolution detection of lines in images, IEEE EUSIPCO, 2016. [2] B. N. Bhaskar *et al.*, Atomic norm denoising with applications to line spectral estimation, IEEE Transactions on signal processing, 2013.

[3] G. Tang *et al.*, Compressed sensing off the grid, IEEE Transactions on information theory, 2013.