# **CONVEX SUPER-RESOLUTION DETECTION OF LINES IN IMAGES**



# Kévin Polisano, Marianne Clausel, Valérie Perrier and Laurent Condat

contact mail : kevin.polisano@imag.fr

#### **OBJECTIVES**

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and solve this optimization problem by a primal-dual algorithm. Then, a spectral estimation method recovers the line parameters, with subpixel accuracy.



## MODEL OF NOISY BLURRED LINES

A sum of K perfect lines of infinite length, with angle  $\theta_k \in (-\pi/2, \pi/2]$ , amplitude  $\alpha_k > 0$ , and offset  $\eta_k \in \mathbb{R}$ , is defined as the distribution



The image observed  $b^{\sharp}$  of size  $W \times H$  is obtained by the convolution of  $x^{\sharp}$  with a blur function  $\phi$ , following by a sampling with unit step  $\Delta: b^{\sharp}[n_1, n_2] =$  $(x^{\sharp} * \phi)(n_1, n_2)$ . The point spread function  $\phi$  is separable, that is  $x^{\sharp} * \phi$  can be obtained by a first horizontal convolution  $u^{\sharp} = x^{\sharp} * \varphi_1$ , where  $\varphi_1$  is Wperiodic and bandlimited, that is its Fourier coefficients  $\hat{g}[m]$  are zero for  $|m| \ge (W-1)/1 = M+1$ , so  $\hat{u}^{\sharp}[m, n_2] = \hat{g}[m]\hat{x}^{\sharp}[m, n_2]$ ; and then a second vertical convolution with  $\varphi_2$ , such as the discrete filter  $h[n] = (\varphi_2 * \operatorname{sinc})[n]$  has compact support, gives  $\hat{b}^{\sharp}[m,:] = \hat{u}^{\sharp}[m,:] * h = \hat{g}[m]\hat{x}[m,:] * h$ , hence  $\mathbf{A}\hat{x}^{\sharp} = \hat{b}^{\sharp}$ 



## **ATOMIC NORM FRAMEWORK**

Let  $z \in \mathbb{C}^N$  be a vector such as  $z = \sum_{k=1}^K c_k a(\omega_k)$ with  $c_k \in \mathbb{C}$  and *atoms*  $a(\omega) \in \mathbb{C}^N$  continuously indexed in a dictionary  $\mathcal{A}$  by a parameter  $\omega$  in a compact set  $\Omega$ . The atomic norm, which enforces sparsity with respect this set A, is defined as

$$\|z\|_{\mathcal{A}} = \inf_{c'_k,\omega'_k} \left\{ \sum_k |c'_k| : z = \sum_k c'_k a(\omega'_k) \right\}.$$

Consider the dictionary

 $\mathcal{A} = \{ a(f,\phi) \in \mathbb{C}^{|I|}, f \in [0,1], \phi \in [0,2\pi) \},\$ 

in which the *atoms* are the vectors of components  $[a(f,\phi)]_i = e^{j(2\pi f i + \phi)}, i \in I$ , and simply  $[a(f)]_i = e^{j2\pi f i}, i \in I$ , if  $\phi = 0$ . The atomic norm writes:

## SUPER-RESOLUTION AND REGULARIZATION OF LINES



$$\|z\|_{\mathcal{A}} = \inf_{c'_k > 0, f'_k, \phi'_k} \left\{ \sum_k c'_k : z = \sum_k c'_k a(f'_k, \phi'_k) \right\}.$$

**Theorem 1** [Caratheodory]. Let  $z = (z_n)_{n=-N+1}^{N-1}$  be a vector with Hermitian symmetry  $z_{-n} = z_n^*$ . z is a positive combination of  $K \leq N + 1$  atoms  $a(f_k)$ if and only if  $\mathbf{T}_N(z_+) \geq 0$  and of rank K, where  $z_+ = (z_0, \ldots, z_{N-1})$  and  $\mathbf{T}_N$  is the Toeplitz operator



Moreover, this decomposition is unique, if  $K \leq N$ .

**Proposition 1**. The atomic norm  $||z||_{\mathcal{A}}$  can be characterized by this semidefinite program SDP(z) [2]:

$$\|z\|_{\mathcal{A}} = \min_{q \in \mathbb{C}^N} \left\{ q_0 : \mathbf{T}'_N(z,q) = \begin{pmatrix} \mathbf{T}_N(q) & z \\ z^* & q_0 \end{pmatrix} \succeq 0 \right\}$$
  
•  $l_{n_2}^{\sharp} = \hat{x}^{\sharp}[:, n_2] = \sum_{k=1}^K c_k a(f_{n_2,k})$ 

The problem can be rewritten in this way:

 $\hat{x}^{\sharp}$ 

$$\tilde{X} = \underset{X \in \mathcal{H}}{\operatorname{arg\,min}} \left\{ \frac{F(X) + G(X) + \sum_{i=0}^{N-1} H_i(L_i(X))}{i = 0} \right\}$$

with  $F(X) = \frac{1}{2} \|\mathbf{H}\hat{x} - y\|_{F}^{2}$ ,  $X = (\hat{x}, q)$ ,  $\nabla F$  a  $\beta$ -Lipschitz gradient, a proximable indicator  $G = \iota_{\mathcal{B}}$ where  $\mathcal{B}$  are the two first boundary constraints, and  $N = M + 1 + H_S$  linear composite terms, where  $H_i = \iota_{\mathcal{C}}$  with  $\mathcal{C}$  the cone of semidefinite positive matrices, and  $L_i \in \{L_m^{(1)}, L_{n_2}^{(2)}\}$ , defined by  $L_m^{(1)}(X) =$  $\mathbf{T}'_{H_{\varsigma}}(\hat{x}[m,:],q[m,:]) \text{ and } L^{(2)}_{n_2}(X) = \mathbf{T}_{M+1}(\hat{x}[:,n_2]).$ L denotes the concatenation of the  $L_i$  operators.

Let  $\tau > 0$  and  $\sigma > 0$  such that  $\frac{1}{\tau} - \sigma \|\mathbf{L}\|^2 \ge \frac{\beta}{2}$ .

**Algorithm**: Primal–dual splitting method [Condat]

**Input:** The blurred and noisy data image *y* **Output:**  $\tilde{x}$  solution of the optimization problem 1: Initialize all primal and dual variables to zero 2: for n = 1 to Number of iterations do  $X_{n+1} = \operatorname{prox}_{\tau G}(X_n - \tau \nabla F(X_n) - \tau \sum_i L_i^* \xi_{i,n}),$ for i = 0 to N - 1 do 4:  $\xi_{i,n+1} = \operatorname{prox}_{\sigma H_i^*} (\xi_{i,n} + \sigma L_i (2X_{n+1} - X_n)),$ 5: end for 6: 7: end for

#### SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

 $\mathbf{A}\hat{x}^{\sharp}$ 

Let be  $d_k \in \mathbb{C}$ ,  $f_k \in [-1/2, 1/2)$ ,  $\zeta_k = e^{j2\pi f_k}$  and

•  $t_m^{\sharp} = \hat{x}^{\sharp}[m, :] = \sum_{k=1}^{K} c_k a(f_{m,k}, \phi_{m,k})^T$  with amplitude  $c_k = \frac{\alpha_k}{\cos \theta_k}$ , phase  $\phi_{m,k} = -\frac{2\pi \eta_k m}{W}$ , frequency  $f_{n_2,k} = \frac{\tan \theta_k n_2 - \eta_k}{W}$ ,  $f_{m,k} = \frac{\tan \theta_k m}{W}$ . •  $||l_{n_2}^{\sharp}||_{\mathcal{A}} = \sum_{k=1}^{K} c_k = \hat{x}^{\sharp}[0, n_2]$  by **Theorem 1**. •  $||t_m^{\sharp}||_{\mathcal{A}} = \text{SDP}(t_m^{\sharp}) \leq \sum_{k=1}^{K} c_k$  by **Proposition 1**.

## REFERENCES

[1] K. Polisano *et al.*, Convex super-resolution detection of lines in images, IEEE EUSIPCO, 2016. [2] B. N. Bhaskar *et al.*, Atomic norm denoising with applications to line spectral estimation, IEEE Transactions

on signal processing, 2013. [3] G. Tang *et al.*, Compressed sensing off the grid, IEEE Transactions on information theory, 2013.

$$z_{i} = \sum_{k=1}^{i} d_{k} \left( e^{j2\pi f_{k}} \right)^{i}, \quad \forall i = 0, \dots, |I| - 1,$$

The **annihilating polynomial filter** is defined by:  $H(\zeta) = \prod_{l=1}^{K} (\zeta - \zeta_l) = \sum_{l=0}^{K} h_l \zeta^{K-l}$  with  $h_0 = 1$ ,



 $\mathbf{P}_{K}(z)h = \begin{pmatrix} z_{K} & \cdots & z_{0} \\ \vdots & \ddots & \vdots \\ z_{|I|-1} & \cdots & z_{|I|-K-1} \end{pmatrix} \begin{pmatrix} h_{0} \\ \vdots \\ h_{K} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ • From  $\mathbf{P}_K(z)$ , compute *h* by a SVD. Form *H* whose roots give access to the frequencies  $f_k$ . 2 Since z = Ud with  $U = (a(f_1), \cdots, a(f_K))$ , find amplitudes by LS:  $d = (\mathbf{U}^{\mathbf{H}}\mathbf{U})^{-1}\mathbf{U}^{\mathbf{H}}z$ .

• For each column  $\tilde{x}[m,:]$  compute  $\{\tilde{f}_{m,k}\}_k$  by • 2 For each column  $\tilde{x}[m, :]$  compute  $\{\tilde{d}_{m,k}\}_k$  by 2 **3**  $\{f_{m,k}\}_m = \{\frac{\tan \theta_k m}{W}\}_m \text{ lin. regression} \to \{\tilde{\theta}_k\}$  $\tilde{\alpha}_{m,k} = |\tilde{d}_{m,k}| \cos(\tilde{\theta}_k) \text{ and } \{\alpha_k\}_k = \mathbb{E}[\{\tilde{\alpha}_{m,k}\}_m]$ **5**  $\tilde{d}_{m,k}/|\tilde{d}_{m,k}| = (e^{-j2\pi\frac{\eta_k}{W}})^m \to {\{\eta_k\}_k \text{ by } \mathbf{1}}$ 

This procedure enables to estimate the line parameters from the solution  $\tilde{x}$  of the optimization problem:



