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Abstract—In this paper, we present a new convex formulation

for the problem of recovering lines in degraded images. Following

the recent paradigm of super-resolution, we formulate a dedicated

atomic norm penalty and we solve this optimization problem

by means of a primal–dual algorithm. This parsimonious model

enables the reconstruction of lines from lowpass measurements,

even in presence of a large amount of noise or blur. Furthermore,

a Prony method performed on rows and columns of the restored

image, provides a spectral estimation of the line parameters, with

subpixel accuracy.

I. INTRODUCTION

Many restoration or reconstruction imaging problems are
ill-posed and must be regularized. So, they can be formulated
as convex optimization problems formed by the combination
of a data fidelity term with a norm-based regularizer. Typically,
given the data y = Ax

] + ", for some unknown image x to
estimate, known observation operator A and some noise ", one
aims at solving a problem like

Find x̃ 2 argmin
x

1

2
kAx� yk

2 + �R(x), (1)

where � controls the tradeoff between data fidelity and reg-
ularization and R is a convex functional, which favors some
notion of low complexity. We place ourselves in the general
framework of atomic norm minimization [1]: the sought-after
image x is supposed to be a sparse positive combination of
the elements, called atoms and of unit norm, of an infinite
dictionary A, indexed by continuously varying parameters.
Then, R is chosen as the atomic norm kxkA of the image x,
which is simply the sum of the coefficients, when the image is
expressed in terms of the atoms. Indeed, by choosing the atoms
as the kind of elements we want to promote in images, we can
estimate them from degraded measurements in a robust way,
even with infinite precision when there is no noise. Methods
achieving this goal are qualified as super-resolution methods,
because they uncover fine scale information, which was lost
in the data, beyond the Rayleigh or Nyquist resolution limit
of the acquisition system [2], [3]. In this paper, we consider
the new setting, where the atoms are lines. This approach will
provide a very high accuracy for the lines estimation, where
the Hough and the Radon transforms fail, due to their discrete
nature. Our motivation stems from the frequent presence in
biomedical images, e.g. in microscopy, of elongated structures
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Fig. 1: The image b
] of three blurred lines with  = 1 (on the

left) and the Radon transform of b] (on the right)

like filaments, neurons, veins, which are deteriorated when
reconstructed with classical penalties.

II. AN IMAGE MODEL OF BLURRED LINES

Our aim is to restore a blurred image b
] containing lines,

and to estimate the parameters—angle, offset, amplitude—of
the lines, given degraded data y. In this section, we formulate
what we precisely mean by an image containing lines. In short,
b
] is a sum of perfect lines, which have been blurred and then

sampled. Both processes are detailed in the following.

A. The Ideal Continuous Model and the Objectives

We place ourselves in the quotient space P =
R/(WZ)⇥R, corresponding to the 2-D plane with horizontal
W�periodicity, for some integer W � 1. To simplify the no-
tations, we suppose that W is odd and we set M = (W�1)/2.

A line of infinite length, with angle ✓ 2 (�⇡/2,⇡/2] with
respect to verticality, amplitude ↵ > 0, and offset � 2 R from
the origin, is defined as the distribution

(t1, t2) 2 P 7! ↵�
�
cos ✓ t1 + sin ✓ t2 + �

�
, (2)

where � is the Dirac distribution. We define the distribution
x
], which is a sum of K different such perfect lines, for some

integer K � 1, as

x
] : (t1, t2) 2 P 7!

KX

k=1

↵k�
�
cos ✓k t1 + sin ✓k t2 + �k

�
. (3)



In this paper, to simplify the discussion, we suppose that the
lines are rather vertical; that is, ✓k 2 (�⇡/4,⇡/4], for every
k = 1, . . . ,K.

Since the ideal model x] is made up of Diracs, the horizontal
Fourier transform x̂

] = F1x
], is composed of a sum of

exponentials. Our goal will be to reconstruct x̂
] through a

known degradation operator A and some noise, which is an ill-
posed problem, by a super-resolution method. Then, spectral
estimation of these exponentials will allow us to recover the
line parameters. Let us first characterize the blur operator A.

B. A Blur Model for an Exact Sampling Process

The image observed b
] of size W ⇥ H is obtained by

the convolution of the distribution x
] with a blur function �,

following by a sampling with unit step:

b
][n1, n2] = (x]

⇤ �)(n1, n2),

8n1 = 0, . . . ,W � 1, n2 = 0, . . . , H � 1, (4)

We also consider that the point spread function � is separable,
that is the function x

]
⇤� can be obtained by a first horizontal

convolution with '1 and then a second vertical convolution
with '2. Formally, x]

⇤ � = (x]
⇤ �1) ⇤ �2 with �1(t1, t2) =

'1(t1)�(t2) and �2(t1, t2) = �(t1)'2(t2).
In order to avoid any approximation passing from continu-

ous to discrete formulation, we assume that � has the following
properties:

• the function '1 2 L
1(0,W ) is W–periodic, bounded,

such that
R
W

0 '1 = 1, and bandlimited; that is, its Fourier
coefficients (1/W )

R
W

0 '1(t1)e�j2⇡mt1/W dt1 are zero
for every m 2 Z with |m| � (W + 1)/2 = M + 1.
The discrete filter g[n] = '1(n), with these assumptions
on '1, has discrete Fourier coefficients which correspond
to Fourier coefficients of '1.

• '2 2 L
1(R), with

R
R '2 = 1. In addition, the discrete

filter
�
h[n] = ('2 ⇤ sinc)(n)

�
n2Z, where sinc(t2) =

sin(⇡t2)/(⇡t2), has compact support of length 2S + 1,
for some S 2 N, i.e. h[n] = 0 if |n| � S + 1. Note
that this assumption is not restrictive, and that if '2 is
bandlimited, we simply have h[n] = '2(n).

So, after the first horizontal convolution, we obtain the func-
tion

x
]
⇤ �1 : (t1, t2) 7!

KX

k=1

↵k

cos ✓k
'1

⇣
t1 + tan ✓k t2 +

�k

cos ✓k

⌘
.

(5)
Let us define u

] by sampling the function x
]
⇤ �1 with unit

step u
][n1, n2] = (x]

⇤ �1)(n1, n2), 8n1 = 0, . . . ,W � 1,
n2 = �S, . . . ,H � 1 + S. With the above assumptions, we
can express b

] from u
] using a discrete vertical convolution

with the filter h: 8n1 = 0, . . . ,W � 1, n2 = 0, . . . , H � 1,

b
][n1, n2] =

SX

p=�S

u
][n1, n2 � p]h[p]. (6)

Altogether, we have completely and exactly characterized the
sampling process, which involves a continuous blur, using

the discrete and finite filters (g[n])W�1
n=0 and (h[n])S

n=�S
. We

insist on the fact that no discrete approximation is made
during this sampling process, due to the assumptions. An
example of three blurred lines is depicted on Fig. 1, with
the normalized filter h approximating a Gaussian function of
variance , on the compact set [�S, S] with S = d4e � 1,
and g = [0M�S , h,0M�S ].

C. Toward an Inverse Problem in Fourier Domain

Let us further characterize the image b
] in Fourier domain.

We consider the image û
] obtained by applying the 1-D

Discrete Fourier Transform (DFT) on every row of u]:

û
][m,n2] =

1

W

W�1X

n1=0

u
][n1, n2]e

�j2⇡mn1/W ,

8m = �M, . . . ,M, n2 2 Z. (7)

which coincide with the exact Fourier coefficients of the
function t1 7! u(t1, n2). Consequently, from (5) and the
computation of û][m,n2] =

1
W

R
W

0 u
](t1, n2)e�j2⇡mt1/W dt1,

we obtain

û
][m,n2] = ĝ[m]x̂][m,n2], 8m = �M, . . . ,M, n2 2 Z,

x̂
][m,n2] =

KX

k=1

↵k

cos ✓k
e
j2⇡(tan ✓k n2+�k/ cos ✓k)m/W

. (8)

Applying a 1-D DFT on the first component of b][n1, n2] =
u
][n1, :] ⇤ h, leads to the elements b̂

][m,n2] = û
][m, :] ⇤ h.

Since the image u] is real, then x̂
] is Hermitian, so we can only

deal with the right part x̂][0 : M, :] and notice that the column
corresponding to m = 0 is real and equal to

P
K

k=1
↵k

cos ✓k
. We

consider in the following the image x̂][m,n2] of size (M+1)⇥
HS , with HS = H+2S, due to the addition of S pixels beyond
the borders for the convolution by the filter h. More precisely,
x̂
]
2 X , where X = {x̂ 2 MM+1,HS

(C) : Im(x̂[0, :]) = 0},
endowed with the following inner product, and ·

⇤ is complex
conjugation:

hx̂1, x̂2i =
HS�1X

n2=0

x̂1[0, n2]x̂2[0, n2]
⇤

+2Re

 
MX

m=1

HS�1X

n2=0

x̂1[m,n2]x̂2[m,n2]
⇤

!
. (9)

Let A denote the operator which multiplies each row vector
x̂
][m, :] by the corresponding Fourier coefficient ĝ[m] and

convolves it with the filter h. Thus, we have Ax̂
] = b̂

]. The
image b

] of the blurred lines is affected by some noise ",
so that we observe the degraded image y = b

] + ", with
" ⇠ N (0, ⇣2) and ⇣ is the noise level.

III. SUPER-RESOLUTION DETECTION OF LINES

A. Atomic Norm and Semidefinite Characterizations

Consider a complex signal z 2 CN represented as a K–
sparse mixture of atoms from the set

A =
�
a(!) 2 CN : ! 2 ⌦

 
, (10)



that is

z =
KX

k=1

cka(!k), ck 2 C,!k 2 ⌦. (11)

We consider atoms a(!) 2 CN that are continuously
indexed in the dictionary A by the parameter ! in a compact
set ⌦. The atomic norm, first introduced in [4], is defined as

kzkA = inf
c
0
k
,!

0
k

(
X

k

|c
0

k
| : z =

X

k

c
0

k
a(!0

k
)

)
, (12)

enforcing sparsity with respect to a general atomic set A.
From now on, we consider the dictionary

A = {a(f,�) 2 C|I|
, f 2 [0, 1],� 2 [0, 2⇡)}, (13)

in which the atoms are the vectors of components [a(f,�)]i =
e
j(2⇡fi+�)

, i 2 I , and simply [a(f)]i = e
j2⇡fi

, i 2 I , if � = 0.
The atomic norm writes:

kzkA = inf
c
0
k
>0

f
0
k
2[0,1]

�
0
k
2[0,2⇡)

(
X

k

c
0

k
: z =

X

k

c
0

k
a(f 0

k
,�

0

k
)

)
. (14)

The Caratheodory theorem ensures that a vector z of length
N = 2P + 1, with z0 2 R, is a positive combination of
K 6 P + 1 atoms a(fk) if and only if TN (z) < 0, where
TN : CN

! MN (C) is the Toeplitz operator

TN : (z0, . . . , zN�1) 7!

0

BBB@

z0 z
⇤

1 · · · z
⇤

N�1
z1 z0 · · · z

⇤

N�2
...

...
. . .

...
zN�1 zN�2 · · · z0

1

CCCA
,

(15)
and < 0 denotes positive semidefiniteness. Moreover, this
decomposition is unique, if K 6 P . We also have the above
result improved from [5, Proposition II.1]:

Proposition 1: The atomic norm kzkA can be characterized
by the following semidefinite program SDP(z):

kzkA = min
q2CN

⇢
q0 : T0

N
(z, q) =


TN (q) z

z
⇤

q0

�
< 0

�
. (16)

with T0

N
: C2N

! MN+1(C). The proof is in the supple-
mentary material, available on the webpage of the first author.

We also define the following set of complex matrices
Q = {q 2 MM+1,HS

(C) : Im(q[:, 0]) = 0}, endowed with
the inner product defined in (9), for the upcoming convex
optimization problem.

B. Properties of the Model x̂
]

with respect to the Atomic Norm

From (8), the rows lm (resp. columns tn2 ) of the matrix x̂
],

with I = {�M, . . . ,M} (resp. I = {0, . . . , HS � 1}), can be
viewed as a sum of atoms

l
]

n2
= x̂

][:, n2] =
KX

k=1

cka(fn2,k), (17a)

 
resp. t]

m
= x̂

][m, :] =
KX

k=1

cka(fm,k,�m,k)
T

!
, (17b)

with

ck =
↵k

cos ✓k
, fn2,k =

tan ✓k n2 + �k/ cos ✓k
W

,

�m,k =
2⇡�km

cos ✓kW
, fm,k =

tan ✓k m

W
. (18)

We define for later use, the horizontal offset ⌘k = �k/ cos ✓k,
the frequency ⌫k = ⌘k/W and the coefficients dm,k =
cke

j�m,k , em,k = e
j�m,k . The vectors l]

n2
of size W = 2M+1

are positive combinations of K atoms a(fn2,k), with K 6 M

since we can reasonably assume that the number of lines K

is smaller than half of the number of pixels M . Thus, the
Caratheodory theorem ensures that the decomposition (17a) is
unique, hence

kl
]

n2
kA =

KX

k=1

ck = x̂
][0, n2], 8n2 = 0, . . . , HS � 1, (19)

whereas, since the dm,k are complex in (17b), the
Caratheodory theorem no longer holds, we simply have from
Proposition 1:

kt
]

m
kA = SDP(t]

m
) 6

KX

k=1

ck, 8m = �M, . . . ,M. (20)

C. Minimization Problem with Atomic Norm Regularization

Given ŷ = b̂
]+ "̂ and the filters g and h, we are looking for

an image x̂ 2 X which minimizes kAx̂ � ŷk, for the norm
derived from the inner product (9), and satisfies properties
(19)–(20). We fixed a constant c greater than the oracle c

] =P
K

k=1 ck. Consequently, the following optimization problem
provides an estimator of (8):

x̃ 2 argmin
x̂,q2X⇥Q

1

2
kAx̂� ŷk

2
, (21)

s.t

8
>>>>><

>>>>>:

8n2 = 0, ..., HS � 1, 8m = 0, ...,M,

x̂[0, n2] = x̂[0, 0] 6 c, (22a)
q[m, 0] 6 c, (22b)
T0

HS
(x̂[m, :], q[m, :]) < 0, (22c)

TM+1(x̂[:, n2]) < 0, (22d)

Let denote H = X⇥Q the Hilbert space in which the variable
of optimization X = (x̂, q) lies. Let us define L

(1)
m (X) =

T0

HS
(x̂[m, :], q[m, :]) and L

(2)
n2 (X) = TM+1(x̂[:, n2]), ◆ be

the indicator function of a set, B ⇢ H the set corresponding
to the boundary constraints (22a)–(22b), and C the cone of
positive semidefinite matrices. Then, the optimization problem
(21)–(22) can be rewritten in this way:

X̃ = argmin
X=(x̂,q)2H

⇢
1

2
kAx̂� ŷk

2 + ◆B(X)

+
MX

m=0

◆C(L
(1)
m

(X)) +
HS�1X

n2=0

◆C(L
(2)
n2

(X))

)
. (23)



D. Algorithm Design

The optimization problem (23) can be viewed in the frame-
work above, involving Lipschitzian, proximable and linear
composite terms [6]:

X̃ = argmin
X2H

(
F (X) +G(X) +

N�1X

i=0

Hi(Li(X))

)
, (24)

with F (X) = 1
2kAx̂ � ŷk

2, X = (x̂, q), rF a 1–Lipschitz
gradient (kAk = 1), G = ◆B, which is proximable, and N =
M + 1 + HS linear composite terms where Hi = ◆C and
Li 2 {L

(1)
m , L

(2)
n2 }. We define the real 0 6 µ 6 M +HS .

Let ⌧ > 0 and � > 0 such that
1

⌧
� �µ =

1

1.9
. (25)

Then the primal–dual Algorithm 1 converges to a solution
(X̃, ⇠̃0, ..., ⇠̃N�1) of the problem (24) [6, Theorem 5.1].

Algorithm 1 Primal–dual splitting algorithm for (24)
Input: ŷ 1D FFT of the blurred and noisy data image y

Output: x̃ solution of the optimization problem (21)–(22)
1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do

3: Xn+1 = prox
⌧G

(Xn � ⌧rF (Xn)� ⌧
P

N�1
i=0 L

⇤

i
⇠i,n),

4: for i = 0 to N � 1 do

5: ⇠i,n+1 = prox
�H

⇤
i

(⇠i,n + �Li(2Xn+1 �Xn)),
6: end for

7: end for

We detail below the terms in step 3 and 4.
For X = (x̂, q), the gradient of F is

rF (X) = (A⇤(Ax̂� ŷ),0)T . (26)

Set x0 = 1
HS

P
HS�1
n2=0 x̂[0, n2], we get 8m,n2:

prox
⌧G

(x̂, q) =

8
<

:

x̂[0, n2] = x0, if x0 6 c,

x̂[0, n2] = c, otherwise,
q[m, 0] = c, if q[m, 0] > c.

(27)

Let be M
(1)

2 MHS+1(C) and M
(2)

2 MM+1(C). We give
the expression of the vectors resulting from these adjoints
T

0
⇤

HS+1M
(1) = (x̂(1)

, q
(1)) 2 C2HS ,T⇤

M+1M
(2) = x̂

(2)
2

CM+1:
x̂
(1)[k] =

1

2
(M (1)

k,HS+1 +M
(1)
HS+1,k

⇤

), (28)

q
(1) = T⇤

HS+1M
(1)

, x̂
(2) = T⇤

M+1M
(2)

, (29)

where T⇤

N
the adjoint of TN , applied to M

(`), ` 2 {1, 2}, is

(T⇤

N
M

(`))[k] =

8
>>>>><

>>>>>:

1

2
Re

(
NX

i=1

M
(`)
ii

)
if k = 1,

1

2

N�kX

i=1

(M (`)
i,k+i�1 +M

(`)
k+i�1,i

⇤

) if k > 1.

Let PC be the projection operator onto C, by Moreau identity:

prox
�H

⇤
i

(v) = v � �proxHi

�

⇣
v

�

⌘
= v � �PC

⇣
v

�

⌘
. (31)

Notice that in the Algorithm 1, ⌧ must be smaller than
1.9, which is a limitation in terms of convergence speed.
To overcome this issue, we subsequently developed a second
algorithm, similar to Algorithm 1, but with the data fidelity
term kAx̂�ŷk activated through its proximity operator, instead
of its gradient. We use this second algorithm, which is detailed
in the supplementary material, in the experiments below, since
it turned out to be faster than Algorithm 1.

E. Recovering Line Parameters by a Prony–Like Method

Finally, the goal is to estimate the parameters (✓k,↵k, ⌘k),
which characterize the K lines, from the solution of the
minimization problem x̃, symmetrized to m = �M, . . . ,�1
beforehand. Let z = (z0, . . . , z|I|�1) be a complex vector, we
rearrange the elements zi in a Toeplitz matrix PK(z) of size
(|I|�K)⇥ (K + 1) and rank K as follows

PK(z) =

0

B@
zK · · · z0
...

. . .
...

z|I|�1 · · · z|I|�K�1

1

CA . (32)

We describe the recovering procedure hereafter, based on [7].
– From m = 1, . . . ,M ,

1) Compute f̃m,k = � arg(�m,k)/(2⇡), where (�m,k)k
are roots of the polynomial

P
K

k=0 hm,kz
k with hm =

[hm,0, . . . , hm,K ]T being the right singular vector of
PK(x̃[m, :]) with I = {0, . . . , HS � 1}. It corresponds
to the singular value zero (the smallest value in practice).

2) Compute ✓̃m,k = arctan(Wf̃m,k/m) from (18).
3) Form the matrix Ũm = [a(f̃m,1) · · · a(f̃m,K)], and

compute d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-
squares linear system U

H

m
Umd̃m = U

H

m
x̃[m, :].

4) Compute c̃m,k = |d̃m,k| and ↵̃m,k = c̃m,k cos(✓̃m,k).
5) Compute ẽm,k = d̃m,k/|d̃m,k|.

– For k = 1, . . . ,K

1) Compute the mean of all estimated angles ✓̃k =
1
M

P
M

m=1 ✓̃m,k and amplitudes ↵̃k = 1
M

P
M

m=1 ↵̃m,k

2) Compute the frequency ⌫̃k as previously from PK(ẽk)
with ẽk = (ẽm,k)m and I = {�M, . . . ,M}.

3) Compute the horizontal offset ⌘̃k = W ⌫̃k/(2⇡)

IV. EXPERIMENTAL RESULTS

The reconstruction procedure described in Section 3, was
implemented in Matlab code, available on the webpage of the
first author. We consider an image of size W = H = 65, con-
taining 3 lines of parameters: (✓1, ⌘1,↵1) = (�⇡/5, 0, 255),
(✓2, ⌘2,↵2) = (⇡/16,�15, 255), (✓3, ⌘3,↵3) = (⇡/6, 10, 255)
The first experiment consists in the reconstruction of the lines
from x̃ in absence of noise, (1) by applying the operator A on
this solution, possibly with others kernels g and h, and then
taking the 1D inverse Fourier transform ; and (2) by applying
the Prony method to recover parameters of the lines, in the aim
to display these one as vectorial lines. We run the algorithm
for 106 iterations. Results of relative errors for the solution x̃

and the estimated parameters are given Fig. 2 (a) and Table
I, where �✓i

/✓i = |✓i � ✓̃i|/|✓i|, �↵i
/↵i = |↵i � ↵̃i|/|↵i|
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∥ x̂− x̂ ♯∥
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∥A x̂− ŷ∥

∥ ŷ∥

(a)
(b) (c)

Fig. 2: (a) Decrease of the relative errors kx̂�x̂
]
k

kx̂]k
and kAx̂�ŷk

kŷk
for the first experiment, (b) Lines affected by a strong noise

level (⇣ = 200) for the second experiment, (c) Lines degraded by a strong blur ( = 8) for the third experiment. In red, the
recovered lines by the Prony Method.

TABLE I: Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

�✓/✓ (10�7, 3.10�6, 7.10�7) (10�2, 6.10�2, 9.10�2) (6.10�7, 9.10�5, 8.10�6)

�↵/↵ (10�7, 10�7, 10�7) (10�2, 9.10�2, 2.10�1) (4.10�5, 2.10�5, 2.10�5)

�⌘ (4.10�6, 7.10�6, 7.10�6) (5.10�2, 4.10�2, 3.10�2) (5.10�5, 10�4, 3.10�4)

and �⌘i
= |⌘i � ⌘̃i|. Although the algorithm is quite slow to

achieve high accuracy, we insist on the fact that convergence
to the exact solution x̂

] is guaranteed, when the lines are not
too close to each other. The purpose of the second experiment
is to highlight the robustness of the method in presence of a
strong noise level. With c = 700 and only 2.103 iterations, we
are able to completely remove noise and to estimate the line
parameters with an error of 10�2. For both first experiments,
we do not depict the estimated images, because it is strictly
identical to the one in Fig. 1. Finally, the last experiment for
105 iterations, illustrates the efficiency of the method even
in presence of a large blur, yielding an error of 10�4. We
emphasize that our algorithm has an accuracy which could
not be achieved by detecting peaks of the Hough or Radon
transform (see Fig. 1). These methods are relevant for giving a
coarse estimation of line parameters. They are robust to strong
noise, but completely fail with a strong blur, which prevents
peaks detection (see supplementary material).

V. CONCLUSION

We provided a new formulation for the problem of re-
covering lines in degraded images using the framework of
atomic norm minimization. A primal–dual splitting algorithm
has been used to solve the convex optimization problem. We
applied it successfully to the deblurring of images, recovering
lines parameters by the Prony method, and we showed the
robustness of the method for strong blur and strong noise
level. We insist on the novelty of our approach, which is
to estimate lines with parameters (angle, offset, amplitude)
living in a continuum, with perfect reconstruction in absence

of noise, without being limited by the discrete nature of the
image, nor its finite size. In a future work, we will study the
separation conditions under which perfect reconstruction can
be guaranteed, we will extend the method with no angle and
periodicity restriction, and we will apply it, for instance, to
inpainting problems.
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