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OBJECTIVES SUPER-RESOLUTION AND REGULARIZATION OF LINES

We present a new convex formulatiop for the pro- | | The Model. A sum of K perfect lines of infinite  after sampling is the following Hermitian matrix:
blem of recovering lines in degraded images. Follo- length, with angle 0, € (—7 /2, 7/2], amplitude v, >

wing the recent paradigm of super-resolution, we 0 and offset 7. € R, is defined as the distribution AT |
. . S ff k j2m(tan O no—1). )m /W
formulate a dedicated atomic norm penalty and X" [m, no| = E € )

solve this optimization problem by a primal-dual K cos O
algorithm. Then, a spectral estimation method re- 2 (t1,tg) = Z a0 (cos O (t1 — 1) + sin Oy to).
covers the line parameters, with subpixel accuracy. k=1

form=-M,.... M,no=0,....,. H M =(W-1)/2.
In the discrete paradigm, the blur function ¢ with
suitable assumptions corresponds in Fourier to a li-

The bl i " of i H i |
e blurred image b' of size W x H is obtained by near operator A, leading to the inverse problem:

the convolution of z* with a separated blur function
¢, tollowing by a sampling with unit step A:

AR = b,
b?[n1,no] = (2%  ¢)(n1, n2). The observed image y is possibly affected by an in-

R painting mask M and some white noise ¢, that is
We denote by x* = Fjz* (resp. b*) the horizontal

Fourier transform of z* (resp. b*), whose expression y = MF, 'AXF + e = HX + €.

ATOMIC NORM FRAMEWORK

Let z € C" be a vector represented as a linear po-

cra(fm,1, Pm,1)

f
R S b* + mask

sitive finite combinaison of sampled complex expo- / |
nentials [a(f, #)]; = eI?7/1+9) that is
cra(frq .1 |
K 4 \/ .
2= cxa(fe,dn). -
k=1 -
whose parameters f;, and ¢, are continuously in- X
dexed in a dictionary of atoms: .
X € argmin - ||HX — y||;
A={a(f.¢) €CY, [ €0,1],¢ € [0,2m)}. R.aeXxQ 2 F
VTLQ — O, ,H — 1
The atomic norm, which enforces sparsity with res- Vm =0,.. M
pect to the set A, is defined as %[0, ns] = %[0,0] < ¢
4 q:ma O] SC
|z|la=  inf <> ¢ iz= Zc;a(fl;,gb;)}. T (X[m,:],q[m,:]) = 0
>0 0P | . T a1 (X[:, 1)) = 0
_ N—-1
Theorem 1. [Carathe.o?:lory]. Let z = (2n),— N1 be ol =X my| = ZK_ cra( fr, k) Resolution. The optimization problem is rewritten:
* n2 k=1 25
a vector with Hermitian symmetry z_,, = 2. 2z 1S
a positive combination of K < N atoms a(f,0) Qg tan 0 no — 4
. . Cl{: p— ] fnz,k p— . _ Q
if and only if Ty(2z4) > 0 and of rank K, where cos 01 W X = arg min {F(X)+G(X)+ Z H, o LZ(X)} (1)
zy = (20,...,2n-1)and T y is the Toeplitz operator R . XcH P |
¢ tEn — Xﬁ [m7 ] — Zkzl Ck:a’(fm k> ) B
S with F(X) = ;[[Hx - y[|f, X = (X,q), VF a -
Tn(z.) = 1 0 N=2 1 £ = tan 0y, m’ _oem m) d . =cr - Lipschitz gradient, a proximable indicator G = 15
' | W 4 | where B are the two first boundary constraints, and
ZN-1 ZN-2 “*° 20 Lines regularization. Minimizing these atomic & = M + 1+ H linear composite terms, where [; =

norms simultaneously enables to enforce sparsity (¢ with C the cone of semidefinite positive matrices
decomposition on rows and columns of the solution: andL; © {L,%)7 Lffz) 1, 1, (X) = Ty X[m,:],q[m,:])

K i
o II7,l.a = >p=y cr = X*[0,n2] (Theorem 1) and L\ (X)) = Tpre1(X]:, n2]). L denotes the conca-
o |[t! |4 =SDP(t! ) < 31, ¢;. (Proposition 1) tenation of the L; operators in the next algorithm.

Moreover, this decomposition is unique, if X < N.

Proposition 1. The atomic norm ||z|| 4 can be cha-
racterized by this semidefinite program SDP(z):

. / T -
I2]|4 = min {qo T (2. q) = ( ~(q) Z> _ O}, SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

qcCN < qo .
Letbed, € C, fr. € [-1/2,1/2), (. = ¢/?™/* and Procedure for retrieving the line parameters

PRIMAL-DUAL ALGORITHM

K - - ~
L 0 and 0 h that 1 HLH2 2 = de (ej271'fk)i7 Vi=0.... N-1L ® For each column X|m, :| compute { f,, 1.} by ©®
et > Uand o > 0 such that - — o > —

B ® For each column X[m, :] compute {d,, 1.} by @
® {fmrtm= {tanvf;km}m lin. regression — {f;,}

O g = \szk‘ COS(ék) —{aite = E{am. i }bm)

Input: The blurred and noisy data image y The annihilating polynomial filter is defined by:

K K Sl
Output: x solution of the optimization problem (1) H(C) = [1121(¢ = Q) = >21=p "~ with hg = 1, O d,,1/|dn | = (e 27w = {5}, by ©®
1: Initialize all primal and dual variables to zero . - - o |
2: for n = 1 to Number of iterations do Z Lo Z oK Z S This procedure enables .to stlper—resolve the line pa-
30 Xpp1 =prox, (X, —7VF(X,)—73% L& ) — o — Sk — Lok ' rameters from the solution x of the problem (1).
4. fori=0to (@ —1do
5: €i,n—|—1 — prOXgH; (gz,n + ULi(QXm—l — Xn)) H(Cr)=0
6: end for . 0
7: end for “K <0 0
Pr(z)h =1 . I =
REFERENCES AN-1 o AN-K-1) Nk 0

® From Pg(z), compute h by a SVD. Form H
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