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Abstract. We present a new convex formulation for the problem of recovering lines in degraded
images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm
penalty and we solve this optimization problem by means of a primal-dual algorithm. This parsi-
monious model enables the reconstruction of lines from lowpass measurements, even in presence of
a large amount of noise or blur. Furthermore, a Prony method performed on rows and columns of
the restored image, provides a spectral estimation of the line parameters, with subpixel accuracy.
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1. Introduction. Many restoration or reconstruction imaging problems are ill-
posed and must be regularized. So, they can be formulated as convex optimization
problems formed by the combination of a data fidelity term with a norm-based reg-
ularizer. Typically, given the data y = Ax] + ✏, for some unknown image x] to
estimate, some known observation operator A and some noise ✏, one aims at solving
a problem like:

Find x̃ 2 argmin
x

1

2
kAx� yk2 + �R(x) ,

where � controls the tradeo↵ between data fidelity and regularization and R is a con-
vex regularization functional. R can be chosen to promote some kind of smoothness.
The classical Tikhonov regularizer R(x) = krxk22 generally makes the problem easy
to solve, but yields over-smoothing of the textures and edges in the recovered image x̃.
A popular and better regularizer is the total variation R(x) = krxk1, see e.g [16, 26];
it yields images with sharp edges, but the textures are still over-smoothed, there are
staircasing e↵ects and the pixel values tend to be clustered in piecewise constant ar-
eas. To overcome these drawbacks, one can penalize higher order derivatives [50, 9] or
make use of nonlocal penalties [63, 24, 21]. Another approach, which is at the heart
of the recent paradigm of sparse recovery [77, 41] and compressed sensing [35, 81], is
to choose R to favor some notion of low complexity. Indeed, many phenomena, when
observed by instruments, yield data living in high dimensional spaces, but inherently
governed by a small number of degrees of freedom. One early choice was to set R as
the `1 norm of wavelet coe�cients of the image. But the signals encountered in ap-
plications like radar, array processing, communication, seismology, or remote sensing,
are usually specified by parameters in a continuous domain, from which they depend
nonlinearly. So, modern sampling theory has widened its scope to a broader class
of signals, with so-called finite rate of innovation, i.e. ruled by parcimonious models
[52, 37, 6, 85]. This encompasses reconstruction of pulses from lowpass measurements
[28] and spectral estimation, which is the reconstruction of sinusoids from point sam-
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ples [78, 79], with many applications [18, 47, 84, 10, 80, 51, 69, 76, 27]. The knowledge
of the kind of elements we want to promote in the image makes it possible to esti-
mate them from coarse-scale measurements, even with infinite precision if there is no
noise. Methods achieving this goal are qualified as super-resolution methods, because
they uncover fine scale information, which was lost in the data, beyond the Rayleigh
or Nyquist resolution limit of the acquisition system [43, 13]. However, in this con-
text, maximum likelihood estimation amounts to structured low rank approximation,
which forms nonconvex and very di�cult, even NP-hard in general, problems [55, 28].
An elegant and unifying formulation, which yields convex problems, is based on the
atomic norm [4, 25]. We place ourselves in this general framework of atomic norm
minimization: the sought-after image x] is supposed to be a sparse positive combi-
nation of the elements of an infinite dictionary A, indexed by continuously varying
parameters. Then, one can choose R as the atomic norm kxkA of the image x, which
can be viewed as the `1 norm of the coe�cients, when the image is expressed in terms
of the unit-norm elements of A, called atoms:

(1) kxkA = inf {t > 0 : x 2 t conv(A)} ,

where conv(A) is the convex hull of the atoms. In this paper, we consider the setting,
which is new to our knowledge, where the atoms are lines. Expressed in the Fourier
domain, these atoms can be characterized with respect to their rows and columns
and the problem can be reduced to a dictionary of 1-D complex exponential sam-
ples, indexed by their frequency and phase, whose atomic norms can be computed via
semidefinite programming [86]. This formulation makes it possible to derive a convex
optimization problem under constraints, solved by mean of a primal-dual splitting al-
gorithm [23]. Then, applying a Prony-like method [71] to the solution of the algorithm
allows us to extract the parameters of the lines. This approach estimates the lines with
high accuracy, whereas the Hough [45, 46, 56] and the Radon [70, 31, 57] transforms
fail, due to their discrete nature. Our motivation stems from the frequent presence in
biomedical images, e.g. in microscopy, of elongated structures like filaments, neurons,
veins, which are deteriorated when reconstructed with classical penalties.

Some related works are dedicated to the recovery of curve-like singularities, by
variational methods [1, 88], Riesz-based models [53, 54] or so-called finite rate of
innovation methods [52, 75, 20, 61, 42, 59, 61]. The originality of our method is
that we reduce the minimization over an infinite dictionary of lines to a semidefinite
programming problem, taking advantage of the line structure in both directions of
the grid. Although there are works in the same vein to recover 2-D point sources, or
equivalently to estimate the parameters of 2-D exponentials [67, 64, 29, 36], applying
similar principles to the estimation of lines is not straightforward and is new, to our
knowledge.

The paper is organized as follows. The model is described in section 2, the
framework of atomic norm minimization underlying the super-resolution principle is
introduced in section 3, the algorithms we derive are presented in section 4. Then a
Prony-like method is developed in section 5, as a way to perform spectral estimation
of the line parameters. Section 6 gives an overview of related works. Finally some
experimental results are shown in section 7. Part of this work has been published in
a conference paper [66]. In the present paper, we added mathematical developments,
another algorithm, a new estimation procedure for the line parameters, an extension
to the whole range of line angles without restriction any more, an application to
inpainting problems and several numerical experiments.
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Notations. Vectors, e.g. z = (z0, . . . , zN�1) and matrices have component
indexes starting at zero. The Hilbert space of complex matrices of size M ⇥ N is
denoted by MM,N . The entry in the (k1 + 1)-th row and (k2 + 1)-th column of a
matrix M is referred to M[k1, k2] or Mk1,k2 . Due to required multiple subscripts,
we often adopt the matlab™ notation M[k1, :] (resp. M[:, k2]) for referring to the
(k1+1)-th row (resp. (k2+1)-th column) of the matrixM. To extract a submatrix, we
also use the notation M[p1 : q1, p2 : q2]. The nuclear norm of the matrix M, denoted
by kMk

⇤
=
P

i
�i(M), is the sum of its singular values �i(M). The operation M⌦N

denotes the Kronecker product between a m ⇥ n matrix M and a p ⇥ q matrix N,
whose result is the mp⇥ nq matrix

(2) M⌦N =

0

B@
M0,0N · · · M0,n�1N

...
. . .

...
Mm�1,0N · · · Mm�1,n�1N

1

CA .

The ground truths for distributions or matrices to recover are denoted by a sharp
·
], while the estimated variables are denoted by a tilde ·̃. Continuous (resp. discrete)
1-D Fourier transform of functions or distributions (resp. vectors) is denoted by a

hat b·. For 2-D functions, distributions, or matrices, the notation bf always refers to
the horizontal Fourier transform of f , while the 2-D Fourier transform is denoted by
Ff . When it is necessary to distinguish them, the horizontal and vertical Fourier
transform are denoted by F1f and F2f , respectively. The Radon transform of a
function f is denoted by Rf . The projection operator onto a set C is denoted by PC

and the proximity operator of a closed proper convex function f : RN
! R [ {+1}

(see [8, 3, 22, 62]) is defined by

(3) prox
f
(x) = argmin

y

✓
f(y) +

1

2
kx� yk22

◆
.

2. An image model of blurred lines. Our aim is to restore lines from an
observed image y = b] + ✏, which is made of a blurred image b] containing lines
and corrupted by some noise ✏ and then to estimate the parameters—angle, o↵set,
amplitude—of the lines. In this section, we formulate what we precisely mean by an
image containing lines. In short, b] is a sum of perfect lines which have been blurred
and then sampled. Both processes are detailed in the following.

2.1. The ideal continuous model and the objectives. We place ourselves in
the quotient space P = R/(WZ)⇥R, corresponding to the 2-D plane with horizontal
W -periodicity, for some integer W > 1. To simplify the notations, we suppose that
W is odd and we set M = (W � 1)/2.

A perfect line, with angle ✓ 2 (�⇡/2,⇡/2] with respect to the vertical axis,
amplitude ↵ > 0 and o↵set ⌘ 2 R from the origin on the horizontal axis, can be defined
as a tempered distribution, which maps a function  in the Schwartz class S(R2) to
its integral along the geometric line L = {(t1, t2) 2 P : (t1� ⌘) cos ✓+ t2 sin ✓ = 0} ;
that is, to ↵

R
L  (t1, t2) dt1 dt2. Thus, by a slight abuse of notation, we can write the

perfect line as:

(t1, t2) 2 P 7! ↵�
�
(t1 � ⌘) cos ✓ + t2 sin ✓

�
,

where � is the (1-D) Dirac distribution. For more details about multi-dimensional
distributions over curves or surfaces, we refer the interested reader to [44, 60].
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Fig. 1. (a) The image b
] of three blurred lines and (b) the Radon transform of b].

t2

t1

✓

⌘

(a)

t2

t1

n2

n1

(b) (c)

Fig. 2. (a) Parameters (✓, ⌘) characterizing the position of a line in the 2-D plane, (b) the
matrix convention we use to display the image obtained by sampling with unit step the blurred line
b] = x] ⇤ � and (c) the resulting discrete image b

][n1, n2] = (x] ⇤ �)(n1, n2).

We define the distribution x
], which is a sum of K di↵erent such perfect lines, for

some integer K > 1, as

(4) x
] : (t1, t2) 2 P 7!

KX

k=1

↵k�
�
(t1 � ⌘k) cos ✓k + t2 sin ✓k

�
.

Figure 2a illustrates the line parameters and Figure 2b the convention we use for
representing images.

Hypothesis 1. At this time, we suppose that the lines are rather vertical; that

is, for every k = 1, . . . ,K, ✓k 2 (�⇡/4,⇡/4].

This hypothesis is made, because the rows and columns of the image will be processed
di↵erently. We will proceeed in the Fourier domain, by applying the discrete 1-D
Fourier transform on every row of the image; we insist on the fact that we do not
consider the usual 2-D Fourier transform. This setting may appear restrictive, but
we show in subsection 4.3 that, in fact, we are able to deal with the general case.

2.2. A blur model for an exact sampling process. The observed image b]

of size W ⇥H in Figure 2c is obtained by convolution of the distribution x
] with a
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blur function �, followed by sampling with unit step:

(5) b][n1, n2] = (x]
⇤ �)(n1, n2), 8n1 = 0, . . . ,W � 1, n2 = 0, . . . , H � 1 .

The point spread function (PSF) � is assumed to be separable; that is, it can be
written �(t1, t2) = '1(t1)'2(t2). So, the function b

] = x
]
⇤ � can be obtained by a

first horizontal convolution with '1 and then a second vertical convolution with '2.
We can show (see Appendix A) that we get the function

(6) b
] = x

]
⇤ � : (t1, t2) 2 P 7!

KX

k=1

↵k k

�
(t1 � ⌘k) cos ✓k + t2 sin ✓k

�
,

where

(7)  k =

✓
1

cos ✓k
'1

⇣
·

cos ✓k

⌘◆
⇤

✓
1

sin ✓k
'2

⇣
·

sin ✓k

⌘◆
,

if ✓k 6= 0 and  k = '1 else.

Remark 1. We can notice that (6) can also be interpreted as follows: every line

has undergone a 1-D convolution with  k in the direction transverse to it. We can

also notice that if '1 and '2 are Gaussian functions and have same variance 
2
, it

follows from (7) that  k has variance 
2
�
cos2 ✓ + sin2 ✓

�
= 

2
as well.

Assumptions. We assume that '1 and '2 have the following properties:

(i) '1 2 L
1(0,W ) is W -periodic, bounded, such that 1

W

R
W

0 '1(t1) dt1 = 1 and
bandlimited; that is, its Fourier coe�cients

cm('1) =
1

W

Z
W

0
'1(t1)e

�j2⇡mt1/W dt1

are zero for every m 2 Z with |m| > (W + 1)/2 = M + 1. Then, the discrete
filter

(8)
�
g[n] = '1(n)

�
n2Z

has discrete Fourier coe�cients

bg[m] =
1

W

W�1X

n=0

g[n]e�j 2⇡mn

W = cm('1) .

(ii) '2 2 L
1(R) is such that

R
R '2(t2) dt2 = 1 and bandlimited so that the discrete

filter

(9)
�
h[n] = '2(n)

�
n2Z

has compact support of length 2S + 1, for some S 2 N; that is,

h[n] = 0, if |n| > S + 1 .

An example of three blurred lines is depicted in Figure 1a. We insist on the
fact that no discrete approximation is made during the sampling process leading
from the continuous to the discrete formulation, due to the Assumptions (i), (ii) and
Hypothesis 1. These important guarantees, for the purpose of super-resolution, are
detailed in Appendix A.
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Remark 2. These assumptions are convenient and reasonable. Indeed, in prac-

tice, we can always approximate a PSF by a bandlimited function. That said, we also

propose in Appendix A a weaker version of Assumption (ii), denoted by (ii’), which

relax the bandlimited restriction. Regarding the periodicity in Assumption (i), this

hypothesis can be circumvented by considering an acquisition process yielding a twice

larger image, in order to “periodize” the observed image.

2.3. Toward an inverse problem in the Fourier domain. Let us further
characterize the blurred image b] in Fourier domain, i.e. its 1-D discrete Fourier
transform (DFT) on its first component (in the horizontal direction) denoted by bb].
To achieve this, let us also denote by bx] the discrete image obtained by sampling
bx] = F1x

], which is the horizontal Fourier transform, in the sense of distributions, of
the ideal model x] (4) made up of 1-D Dirac distributions. Therefore, bx] is composed
of a sampled sum of exponentials:

bx][m,n2] =
KX

k=1

↵k

cos ✓k
e j2⇡(n2 tan ✓k�⌘k)

m

W ,(10)

m = �M, . . . ,M, n2 = �S, . . . ,H � 1 + S .

Remark 3. bx]
is such that bx][�m,n2] = bx][m,n2]⇤, where ·⇤ denotes the complex

conjugation, so we can only deal with the right part bx][0 : M, : ] and we can note that

the row corresponding to m = 0 is real and equal to
P

K

k=1
↵k

cos ✓k
. We consider in the

following the Fourier image bx][m,n2] of size (M + 1)⇥HS, with HS = H + 2S, due
to the addition of S pixels beyond the boundaries, allowing the convolution with filter

h determined hereafter.

Our goal will be to reconstruct bx] from bb], that is from its observations through a
known degradation operator A, which we characterize in the following proposition:

Proposition 1. Let A be the operator which for all m = 0, . . . ,M multiplies each

row vector bx][m, :] of bx]
by the corresponding Fourier coe�cient bg[m] and convolves

it with the filter h = (h�S , . . . , h0, . . . , hS). Then, we have the relation

(11) Abx] = bb]
,

which can be alternatively rewrite on each row m = 0, . . . ,M as:

(12) bg[m](bx][m, :] ⇤ h) = bb][m, :] .

Proof. See in Appendix B.

Remark 4. From a matrix point of view, the operator A corresponds to a left

and right matrix multiplication with the matrices bG of size (M + 1) ⇥ (M + 1) and

the transpose of Ȟ of size H ⇥HS defined by:

(13) bG = diag(bg0, . . . , bgM ), Ȟ =

0

BBBBB@

h�S · · · hS 0 0 · · · 0
0 h�S · · · hS 0 · · · 0
.
.
. · · ·

. . .
. . .

. . . · · ·
.
.
.

0 · · · 0 h�S · · · hS 0
0 · · · 0 0 h�S · · · hS

1

CCCCCA
;

that is,

(14) Abx] = bGbx]ȞT
.
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Finally, the image b] of the blurred lines is corrupted by noise, so that we observe
the degraded image

(15) y = b] + ✏, ✏ ⇠ N (0, ⇣) ,

with ⇣ the noise level. Thus, the problem consists from (15) and (11) in recovering
bx from by, which takes the form of a ill-posed linear inverse problem. Then, we will
need to express a convex optimization problem, under constraints exploiting the sparse
structure of the signal we are looking for, namely that it is a combination of lines. The
super-resolution process consists of recovering the high frequency content (lost because
of the blur operator) from the degraded image y, which can be viewed as a spectral
extrapolation process. Then, we aim at recovering the parameters (✓k, ⌘k,↵k) of these
lines, as a post-process, after the reconstruction. This procedure will be decomposed
as:

1. First, solve a convex optimization problem of the form:

(16) Minimize kby �Abxk , under the constraint that bx is made of lines ;

that is, to go to the bottom line of the diagram in Figure 15 from y to bx].
2. Second, perform a Prony-like method on bx] in order to estimate the K pa-

rameters (✓k, ⌘k,↵k).

These two steps are summarized in Figure 3. Note that this work also covers the
case where a mask is applied; that is, it can encompass inpainting problems. In the
next section, we present the framework of atomic norm, from which the optimization
problem will be derived.

3. Super-resolution detection of lines.

3.1. Atomic norm and semidefinite characterizations. Consider a complex
signal z 2 CN represented as a K-sparse mixture of atoms from the set

A =
�
a(!) 2 CN : ! 2 ⌦

 
,

that is,

z =
KX

k=1

cka(!k), ck > 0, !k 2 ⌦ .

We consider atoms a(!) 2 CN that are continuously indexed in the dictionary A

by the parameter ! in a compact set ⌦. The atomic norm, first introduced in [19], is
defined as

kzkA = inf {t > 0 : z 2 t conv(A)} ,

where conv(A) denotes the convex hull of a general atomic set A, enforcing sparsity.
Chandrasekaran et al. [19] argue that the atomic norm is the best convex heuristic for
underdetermined, structured linear inverse problems, which generalizes the `1 norm
for sparse recovery and the nuclear norm for low-rank matrix completion.
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F
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1
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✏

⇤ � M

A D

x
] b] Mb]

bx] Abx] y

H

O
P
T
I
M
I
Z
A
T
I
O
N

PRONY

Fig. 3. The two steps of the procedure : a convex optimization formulation for the reconstruc-
tion of the lines (in orange) and a Prony-like method for the estimation of their parameters (in
purple).

In our problem (4) the atoms are somehow lines, so one can considered in the
Fourier domain the dictionary A2D indexed by the angle and the o↵set; that is,
composed of the 2-D exponential atoms of size W ⇥HS :

a2D(✓k, ⌘k) =
1

cos ✓k
e j2⇡(n2 tan ✓k�⌘k)m/W

,

m = �M, . . . ,M, n2 = �S, . . . ,H � 1 + S ,

as illustrated in Figure 4. The problem is that there is no closed-form expression for
the atomic norm in these 2-D dictionaries, to our knowledge. However, in the case of
1-D complex exponentials, there is a way to compute the atomic norm via semidefinite
programming. So, we reformulate the problem using the simplified 1-D case. From
now on, we consider the dictionaries

A =

⇢
a(f,�) 2 C|I|

, f 2 [0, 1], � 2 [0, 2⇡)

�
,(17)

A0 =

⇢
a(f) 2 C|I|

, f 2 [0, 1]

�
,(18)

in which the atoms are the vectors of components [a(f,�)]i = e j(2⇡fi+�)
, i 2 I and
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= ↵1 + ↵2 + ↵3

= ↵1 + ↵2 + ↵3

Fig. 4. Illustration with a signal made of a weighted combination of three lines (in gray). In
the Fourier domain, we have through the sampling process the same kind of combination, but with
2-D exponential atoms a2D(✓k, ⌘k). In both cases, the weights ↵i are the amplitudes of the lines.

[a(f)]i = [a(f, 0)]i = e j2⇡fi
, i 2 I. The atomic norm writes:

(19) kzkA = inf
c
0
k
>0

f
0
k
2[0,1)

�
0
k
2[0,2⇡)

(
X

k

c
0

k
: z =

X

k

c
0

k
a(f 0

k
,�

0

k
)

)
.

Theorem 2 (Caratheodory). A vector z = (z⇤
N�1, . . . , z

⇤

1 , z0, z1, . . . , zN�1) of

length 2N � 1, with z0 2 R, is a positive combination of K 6 N atoms a(fk) if and

only if TN (z+) < 0 and is of rank K, where z+ = (z0, . . . , zN�1) is of length N ,

TN : CN
! TN is the Toeplitz operator

(20) TN : z+ = (z0, . . . , zN�1) 7!

0

BBB@

z0 z
⇤

1 · · · z
⇤

N�1
z1 z0 · · · z

⇤

N�2
.
.
.

.

.

.
. . .

.

.

.

zN�1 zN�2 · · · z0

1

CCCA
,

with TN the Hilbert subspace of MN composed of Hermitian Toeplitz matrices and < 0
denotes positive semidefiniteness. Moreover, this decomposition is unique, if K < N .

Proof. See references [14, 15, 83, 65].

We are now in position to characterize the atomic norm:

Proposition 3. The atomic norm kzkA can be characterized by the following

semidefinite program:

(21) kzkA = min
q2CN ,q0>0

⇢
q0 : T0

N
(z, q) =

✓
TN (q) z
z⇤

q0

◆
< 0

�
,

where q0 is the first component of vector q = (q0, . . . , qN�1) 2 R+
⇥ CN�1

and

z⇤ = zT
.

Proof. This result is an improvement of [82, Proposition II.1] and the proof is
given in Appendix C.
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Since the matrix T0

N
(z, q) in (21) is Hermitian and positive semidefinite, its

eigenvalues (�i)06i6N are positive reals. So, q0 = 1
N+1 tr(T

0

N
(z, q)) = 1

N+1

P
N

i=0 �i

is real and positive.

3.2. Properties of the model bx] with respect to the atomic norm. In
Fourier domain, the discrete image bx] given by (10) can be viewed as a sum of atoms:
regarding the columns l]

n2
of the matrix bx], with I = {0, . . . , HS � 1}, we have:

(22) l]
n2

= bx][:, n2] =
KX

k=1

cka(fn2,k) ,

and regarding the rows t]
m
, with I = {�M, . . . ,M}, we have:

(23) t]
m

= bx][m, :] =
KX

k=1

cka(fm,k,�m,k)
T
,

where

ck =
↵k

cos ✓k
, fn2,k =

n2 tan ✓k � ⌘k
W

,(24)

�m,k = �
2⇡m⌘k
W

, fm,k =
m tan ✓k

W
,

dm,k = cke
j�m,k , em,k = e j�m,k .

The vectors l]
n2

of size W = 2M + 1 are positive combinations of K atoms a(fn2,k),
with K 6 M , since we can reasonably assume that the number of lines K is smaller
than half the number of pixels M . Thus, Theorem 2 ensures that the decomposition
(22) is unique, hence, following (19):

(25) kl]
n2
kA =

KX

k=1

ck = bx][0, n2], 8n2 = 0, . . . , HS � 1 .

By contrast, since the coe�cients dm,k are complex, Theorem 2 no longer holds and
we simply have from Proposition 3:

(26) kt]
m
kA 6

KX

k=1

ck, 8m = �M, . . . ,M .

Let us take a closer look at the case of one line; that is, K = 1, characterized by
parameters (✓, ⌘,↵). We recall by (10) that bx] can be written as:

bx][m,n2] = c1e
j2⇡((f1�f0)n2+f0)m, c1 =

↵

cos ✓
, f0 = �

⌘

W
, f1 =

tan ✓ � ⌘

W
.

Let z = (z0, . . . , zN�1) be a complex vector, whose elements zi are rearranged in a
Toeplitz matrix PK(z) of size (N �K)⇥ (K + 1) and rank K as follows:

PK(z) =

0

B@
zK · · · z0
...

. . .
...

zN�1 · · · zN�K�1

1

CA .

We get the following characterization of one line in Fourier domain:
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Proposition 4. An image bx is of the form bx[m,n] = c1e j2⇡((f1�f0)n+f0)m)
if and

only if the columns ln and rows tm of bx are such that TM (ln) is positive semidefinite

and of rank one, P1(tm) is of rank one and bx[0, n] = bx[0, 0] for all m and n.

Proof. See Appendix D.

Besides, with D = diag(c1, . . . , cK) and Vn2 =
⇥
a(fn2,1) · · · a(fn2,K)

⇤
, we can

remark that

TM (l]
n2
) =

KX

k=1

ckTM (a(fn2,k)) =
KX

k=1

cka(fn2,k)a(fn2,k)
⇤ = Vn2DV⇤

n2
,

where ·
⇤ denotes the hermitian conjugate. Since the Toeplitz matrices TM (a(fn2,k))

only contain ones on their main diagonal, then 1
M
tr(TM (l]

n2
)) =

P
K

k=1 ck. Moreover,
the trace of a positive semidefinite matrix is equal to its nuclear norm, hence:

kTM (l]
n2
)k⇤ = tr(TM (l]

n2
)) = M

KX

k=1

ck = Mkl]
n2
kA .

The nuclear norm of a matrix, which corresponds to the sum of its singular val-
ues, is often used as a convex approximation of the rank of this matrix [73, 72].
Consequently, in the following, we consider a convex relaxation of the line character-
ization given in Proposition 4, in which the rank constraint on TM (l]

n2
) is replaced

by an atomic norm constraint on kl]
n2
kA. Since the minimum value to achieve is

c
] =

P
K

k=1 ck and since the atomic norm lies on the first row bx[0, n2] = bx[0, 0], we
impose the constraint bx[0, n2] = bx[0, 0] 6 c

]. We do the same for the rows.

Remark 5. We showed that if every row and column of the horizontal Fourier

transform of the image satisfy assumptions of the Proposition 4, then we have the

horizontal Fourier transform of an image containing one line. So, Proposition 4
supports our strategy of dealing with the rows and columns of the image, to reformulate

the 2-D problem as a combination of 1-D problems. Proposition 4 shows that, in the

case of one line, we do not lose anything by this process; in other words, there is

no other image than the image containing one line, whose rows and columns have

the prescribed form. This is an indication (not a proof) that the upcoming SDP

formulation (27)-(28) is tight: we will not promote structures other than lines in the

image. We could not derive a similar characterization for K > 2 lines, which is

a di�cult task, but the philosophy remains: the aim is to minimize atomic norms

of rows and columns simultaneously, so that the solution will be composed of sparse

sums of exponentials in both directions. The convex optimization problem exploiting

this strategy is presented in the next section.

4. Minimization problem with atomic norm regularization. Given the
operator A : X ! Y defined in (14) using the filters (8)-(9) and by the Fourier
version of the degraded image observed (15), we are looking for an image bx 2 X

which minimizes kAbx � bykY , for the norm derived from the inner product (32) and
whose rows and columns satisfy properties (25) and (26). We fix a constant c 6 c

].
Consequently, the following optimization problem provides an estimator of bx] defined
in (10):

(27) x̃ 2 argmin
(bx,q)2X⇥Q

1

2
kAbx� byk2

Y
,
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s.t

8
>>>>><

>>>>>:

bx[0, n2] = bx[0, 0] 6 c ,(28a)

q[m, 0] 6 c ,(28b)

TM+1(bx[:, n2]) < 0 ,(28c)

T0

HS
(bx[m, :],q[m, :]) < 0 ,(28d)

8n2 = 0, ..., HS � 1, 8m = 1, ...,M ,

where the real Hilbert spaces (X , h·, ·iX ), (Y, h·, ·iY) and (Q, h·, ·iQ) are respectively
defined by

(29) X =
n
bx 2 C(M+1)⇥HS : Im(bx[0, :]) = 0

o
,

endowed with the following inner product:

(30) hbx1, bx2iX =
HS�1X

n2=0

bx1[0, n2]bx2[0, n2] + 2Re

 
MX

m=1

HS�1X

n2=0

bx1[m,n2]bx2[m,n2]
⇤

!
;

(31) Y =
n
by 2 C(M+1)⇥H : Im(by[0, :]) = 0

o
,

which is equivalent to (29) for S = 0, endowed with the inner product:

(32) hby1, by2iY =
H�1X

n2=0

by1[0, n2]by2[0, n2] + 2Re

 
MX

m=1

H�1X

n2=0

by1[m,n2]by2[m,n2]
⇤

!
;

(33) Q =
n
q 2 C(M+1)⇥HS : Im(q[:, 0]) = 0

o
,

endowed with the following inner product:

(34) hq1,q2iQ =
MX

m=0

q1[m, 0]q2[m, 0] + 2Re

 
HS�1X

n2=1

MX

m=0

q1[m,n2]q2[m,n2]
⇤

!
.

Remark 6. Since we deal with rows and columns of bx 2 X and rows of q 2 Q,

we also mention the real Hilbert spaces they belong to, which are respectively denoted

by Xl ⇢ R⇥ CM
, Xt ⇢ CHS and Qt ⇢ R⇥ CHS�1

endowed with the following inner

products:

hl1, l2iXl = l1[0]l2[0] + 2Re

 
MX

m=1

l1[m]l2[m]⇤
!

,(35)

ht1, t2iXt = 2Re

 
HSX

n2=1

t1[n2]t2[n2]
⇤

!
,(36)

hq1, q2iQt = q1[0]q2[0] + 2Re

 
HS�1X

n2=1

q1[n2]q2[n2]
⇤

!
.(37)

The operators TM+1 : Xl ! TM+1 and T0

HS
: Xt ⇥ Qt ! THS+1 are defined

respectively on columns and rows of bx 2 X and q 2 Q, endowed respectively with the
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inner products (35) and (36)-(37), to Hermitian Toeplitz matrices of dimension M+1
and HS +1 respectively, whose spaces are denoted by TM+1 and THS+1 endowed with
the classical inner product on complex matrices:

(38) hM,NiM =
X

i,j

M⇤

ij
Nij ,

and corresponding Frobenius norm

(39) kMkF =

0

@
X

i,j

|Mij |
2

1

A
1/2

.

The expressions of the operators TN and T0

N
are given respectively in (20) and (21).

Remark 7. This optimization problem could be rewritten in a regularized form

involving a parameter � to tune, what is not any better than the tuning parameter c,

which has the advantage of having a physical meaning, related to the line intensities.

Moreover, we have a simple estimator of c
]
noticing that

bb][0, n2] =
�
bg[0]bx][0, :] ⇤ h

�
[n2] =

 
X

i

h[i]

!
bg[0]c] = c

]
, 8n2 = 1, . . . , H .

Then, since by[0, n2] = bb][0, n2] + b✏ with E(b✏ ) = 0, one can get an estimation of the

parameter c
]
by averaging the first row:

c ⌘
1

H

H�1X

n2=0

by[0, n2] ⇡ c
]
.

We keep this constrained formulation and write it in a more suitable way as follows.
Let H = X ⇥Q be the Hilbert space in which the variable X = (bx,q) lies, endowed
with the following inner product:

(40) h (bx1,q1), (bx2,q2) iH = hbx1, bx2iX + hq1,q2iQ .

Let us define L(1)
m : H! THS+1 and L(2)

n2 : H! TM+1 by

L(1)
m

(X) = T0

HS
(bx[m, :],q[m, :]) ,(41)

L(2)
n2

(X) = TM+1(bx[:, n2]) .(42)

We denote by ◆C the indicator function of a convex set C, defined by

◆C : x 7!

(
0 ifx 2 C

+1 ifx /2 C
.

We denote by C the cone of positive semidefinite matrices and we introduce the set
B ⇢ H corresponding to the boundary constraints:

(43) B =

⇢
(bx,q) 2 H : bx[0, n2] = bx[0, 0] 6 c, q[m, 0] 6 c

�
.
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Then the optimization problem (27) under constraints (28) can be rewritten as follows:
(44)

X̃ = argmin
X=(bx,q)2H

(
1

2
kAbx� byk2

Y
+ ◆B(X) +

MX

m=1

◆C(L
(1)
m

(X)) +
HS�1X

n2=0

◆C(L
(2)
n2

(X))

)
.

We now propose two di↵erent algorithms to solve this convex optimization prob-
lem. The first one in subsection 4.1 is more general and can be applied to the extended
setting (with no restriction on the line angles) and inpainting problems, presented in
subsection 4.3 and subsection 4.4 respectively, whereas the second cannot, since it
is di�cult to compute the proximity operator associated to the data fidelity term.
However, the second algorithm detailed in subsection 4.2, happens to be faster and
so will be used for most of the numerical experiments exposed in section 7.

4.1. First algorithm design. The optimization problem (44) can be cast as a
minimization problem, involving smooth, proximable and linear composite terms [23]:

(45) X̃ = argmin
X2H

(
F (X) +G(X) +

Q�1X

i=0

Hi(Li(X))

)
,

with F (X) = 1
2kAbx � byk

2
Y
, X = (bx,q), G = ◆B, which is proximable, Q = M +HS

linear composite terms where Hi = ◆C , Li = L(2)
i

when 0 6 i 6 HS � 1 and Li =

L(1)
i�HS+1 when HS 6 i 6 HS + M � 1. We define Hx =

P
Q�1
i=0 Hixi, L(1)(X) =

(L(1)
1 (X), . . . ,L(1)

M
(X)) and L(2)(X) = (L(2)

0 (X), . . . ,L(2)
HS�1(X)). L = (L(1)

,L(2)) is
the linear operator such that the composite terms can be written H � L, where �
denotes composition. We define an inner product on the range of L(1), L(2) and L,
which are product spaces, as the sum of the inner products defined on these spaces
(similarly to (40)). We denote the corresponding norms by k·k(1), k·k(2) and k·k(1,2).
We define the following operator norms:

kAk = sup
bx2X

kAbxk
Y

kbxk
X

,(46)

kLik = sup
X2H

kLi(X)kF
kXk

H

,(47)

���L(j)
��� = sup

X2H

��L(j)(X)
��
(j)

kXk
H

, j 2 {1, 2} ,(48)

kLk = sup
X2H

kL(X)k(1,2)
kXk

H

.(49)

We now establish some properties of these functions, operators and norms.

Lemma 5. The norm (46) of the operator A defined in (14) is given by

(50) kAk = kbgk1kbhk1 .

Proof. If we denote by bxk the (k+1)-th row of bx, then by definition the operatorA
maps the (k+1)-th row of bx to bg[k](bxk⇤h). Let us calculate the norm of this operator.
By considering in Fourier the norm operator f 7! f ⇤ h we have the inequality

kbxk ⇤ hk2 6 kbhk1kbxkk2 .
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Thus, with the norm derived from (30) we get

kAbxk2
Y
= |bg0|2kbx0 ⇤ hk

2
2 + 2|bg1|2kbx1 ⇤ hk

2
2 + · · ·+ 2|bgM |

2
kbxM ⇤ hk

2
2 ,(51)

6 kbgk2
1
kbhk2

1
(kbx0k

2
2 + 2kbx1k

2
2 + · · ·+ 2kbxMk

2
2) ,

6 kbgk2
1
kbhk2

1
kbxk2

X
.

Since the filter h is lowpass, the equality is attained for an image bx whose all rows are
zero, except one which is constant (and nonzero), of index m0, where bgm0 corresponds
to the maximum kbgk

1
, which proves the result (50).

Lemma 6. The adjoint operator of the operator A is denoted by A⇤
and defined

such that hAbx , bzi
Y
= hbx , A⇤bzi

X
. Its matrix expression is given by

(52) A⇤bz = bG⇤bzȞ .

Proof. From the definition (14), we have the matrix product Abx = bGbxȞT. Then
we use the fact that for any matrix M, we have hMbx1 , bx2iM = hbx1 , M⇤bx2iM and
we remark that

hbx1 , bx2iX = hbx1 , bx2iM + hbx1 , bx2i
⇤

M
� hbx1[0, :] , bx2[0, :]iRHS

.

This yields the claimed result.

Then, we have the following proposition:

Proposition 7. For X = (bx,q), the gradient of F (X) = 1
2kAbx� byk

2
Y

is

rF (X) = (A⇤(Abx� by),0)T ,

which is Lipschitz-continuous with Lipschitz constant � = kbgk2
1
kbhk2

1
.

Proof. See in Appendix G.

We now give in the next proposition the adjoint operators of:

TM+1 : (Xl , h· , ·iXl
)! (TM+1 , h· , ·iM) ,(53)

T0

HS
: (Xt ⇥Qt , h· , ·iXt⇥Qt

)! (THS+1 , h· , ·iM) ,(54)

where the inner products are defined in (35), (36), (37) and (38).

Proposition 8. For M(1)
2 THS+1 and M(2)

2 TM+1 the adjoint operators of

(53) and (54) applied to M(1)
and M(2)

give the vectors

z2 = T⇤

M+1M
(2)
2 R⇥ CM

,

(z1, q1) = T
0
⇤

HS
M(1)

2 CHS ⇥ (R⇥ CHS�1) ,

respectively, whose components are:

z2[k] =
M�kX

l=0

M(2)
l+k,l

, 8k = 0, . . . ,M ,

z1[k] = M(1)
HS+1,k, q1[k] =

HS�1�kX

l=0

M(1)
l+k,l

+ �kM
(1)
HS ,HS

, 8k = 0, . . . , HS � 1 .
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Proof. See in Appendix E.

Now we will provide an explicit upper bound for the operator norm kLk.

Proposition 9. The norm of the operator L = (L(1)
,L(2)), where

L(1)(X) = (L(1)
1 (X), . . . ,L(1)

M
(X)) ,

L(2)(X) = (L(2)
0 (X), . . . ,L(2)

HS�1(X)) ,

with L(1)
m and L(2)

n2 defined in (41)-(42), satisfies

kLk2 6 kL(1)
k
2 + kL(2)

k
2 = kT0

HS
k
2 + kTM+1k

2 = (HS + 1) + (M + 1) .

Proof. See in Appendix F.

To solve the problem (44), we first propose Algorithm 1, which uses the primal-
dual method introduced in [66]. Following [23, Theorem 5.1], we know that the
method converges to a solution (X̃, ⇠̃0, ..., ⇠̃Q�1) of the problem (45), provided the
parameters ⌧ > 0 and � > 0 in Algorithm 1 are such that

(55)
1

⌧
� �kLk2 >

�

2
.

We then choose 0 < ⌧ < 2, � = (HS +M + 2)�2(1/⌧ � �/1.9) and ⇢n ⌘ ⇢ = 1.

Algorithm 1 Primal-dual splitting algorithm for (45)

Input: by 1-D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem (27) under constraints (28)
1: Initialize primal and dual variables to zero X0 = 0, ⇠i,0 = 0, 8i 2 J1, QK
2: for n = 1 to Number of iterations do
3: Xn+1 = prox

⌧G
(Xn � ⌧rF (Xn)� ⌧

P
Q�1
i=0 L⇤

i
⇠i,n),

4: Xn+1 = ⇢nX̃n+1 � (1� ⇢n)Xn,
5: for i = 0 to Q� 1 do
6: ⇠i,n+1 = prox

�H
⇤
i

(⇠i,n + �Li(2Xn+1 �Xn)),

7: ⇠i,n+1 = ⇢n⇠̃i,n+1 + (1� ⇢n)⇠i,n,
8: end for
9: end for

We detail below the other terms in lines 3 and 6 of Algorithm 1, involving the
computation of proximity operators and adjoint operators. For more details on convex
analysis, monotone operator theory and proximal splitting methods, we refer the
reader to [8, 3, 22, 62].

Set x0 = 1
HS

P
HS�1
n2=0 bx[0, n2], set G = ◆B, with B defined in (43). Then we have, for

every m,n2:

prox
⌧G

(bx,q) =

8
><

>:

bx[0, n2] = x0 if x0 6 c

bx[0, n2] = c otherwise

q[m, 0] = c if q[m, 0] > c

.

Let PC be the projection operator onto the cone of positive matrix C; by Moreau
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identity [3],

prox
�H

⇤
i

(M) = M� �proxHi

�

✓
1

�
M

◆
= M� PC (M) .

Finally, we need to compute, in line 3 of the algorithm, the adjoint operators
L⇤

i
, where the operators Li are defined in (41)-(42). The dual variables (⇠i,n)i in

Algorithm 1 refer to Hermitian Toeplitz matrices M(1)
m 2 THS+1 or M(2)

n2 2 TM+1.

By definition, the adjoint operators give the images (z(1)m ,q(1)
m ) = L(1)⇤

m M(1)
m and

(z(2)n2 ,q
(2)
n2 ) = L(2)⇤

n2 M(2)
n2 . According to the definitions (41)-(42), for a primal vari-

able X = (bx,q) the operators L(1)
m and L(1)

n2 act respectively on the (m+ 1)-th row of
the images (bx,q) and on the (n2 +1)-th column of the image bx only; so we can easily

see, concerning the adjoint operators, that q(2)
n2 = 0 and z(2)n2 (resp. z(1)m ,q(1)

m ) is zero,
except at the corresponding column index n2 (resp. row index m), where

z(2)
n2

[:, n2] = T⇤

M+1M
(2)
n2

,(56)

(z(1)
m

[m, :],q(1)
m

[m, :]) = T
0
⇤

HS
M(1)

m
,(57)

with the expression of the adjoint operators T⇤

M+1 and T
0
⇤

HS
given in Proposition 8.

Thus, the operations on Xn = (bxn,qn) before applying prox
⌧G

consist in a gradient
descent step Xn � ⌧rF (Xn), followed by an update of all its rows and columns due

to the terms �⌧
P

Q�1
i=0 L⇤

i
⇠i,n, whose expressions are provided by (56) and (57).

4.2. Second algorithm design. We can note that in Algorithm 1, ⌧ must be
smaller than 2/�, which is a limitation in terms of convergence speed. To overcome
this issue, we subsequently developed a second algorithm, similar to Algorithm 1,
but with the data fidelity term kAbx� bykY activated through its proximity operator,
instead of its gradient. We consider solving the optimization problem by an over-
relaxed version [23] of the Chambolle–Pock algorithm [17]:

(58) X? = argmin
X2H

{G(X) +H(L(X))} ,

with now G = 1
2kA · �byk2

Y
which is proximable, Hx =

P
Q

i=0 Hixi with Hi = ◆C for

i < Q, where Li = L(2)
i

when 0 6 i 6 HS � 1, Li = L(1)
i�HS+1 when HS 6 i 6 Q � 1

and HQ = ◆B with LQ = Id. So now, kLk2 6 HS +M + 3.

Let ⌧ > 0 and � > 0 such that ⌧�kLk2 = 1, then the primal-dual Algorithm 2,
with F = 0 and weights ⇢n ⌘ ⇢ = 1.9, which is an over-relaxed version of the
Chambolle–Pock algorithm, converges to a solution (X̃, ⇠̃0, ..., ⇠̃Q�1) of the problem
(45) [23, Theorem 5.1].

The Algorithm 2 requires computing prox
⌧G

. Since we have

p = prox
⌧G

(bx), bx� p = r(⌧G)(p) ,(59)

, bx� p = ⌧A⇤(Ap� by) ,
, bx+ ⌧A⇤by = (I+ ⌧A⇤A)p ,

the proximity operator has the following expression:

prox
⌧G

(bx) = (I+ ⌧A⇤A)�1(bx+ ⌧A⇤by) ,
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Algorithm 2 Primal-dual splitting algorithm for (58)

Input: by 1-D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem (27) under constraints (28)
1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: X̃n+1 = prox

⌧G
(Xn � ⌧

P
Q�1
i=0 L⇤

i
⇠i,n),

4: Xn+1 = ⇢nX̃n+1 � (1� ⇢n)Xn

5: for i = 0 to Q� 1 do
6: ⇠̃i,n+1 = prox

�H
⇤
i

(⇠i,n + �Li(2Xn+1 �Xn)),

7: ⇠i,n+1 = ⇢n⇠̃i,n+1 + (1� ⇢n)⇠i,n
8: end for
9: end for

for which we propose below two ways of computing the inverse.
We proved in Lemma 6 that A⇤by = bG⇤byȞ and then

(I+ ⌧A⇤A)bx = bx+PbxQ, P = ⌧G⇤G, Q = ȞTȞ .

The square matrices P and Q are of size p = M + 1 and q = HS . We have to solve
(I + ⌧A⇤A)bx = z; that is, bx + PbxQ = z. This kind of system can be solved by the
mean of the Kronecker Product (2) as:

bx+PbxQ = z () (Ipq +Q⌦PT)vec(bx) = vec(z).

where vec(bx) denotes the vectorization of the matrix bx formed by stacking the columns
of bx into a single column vector and Ipq +Q ⌦ PT is a matrix of size pq ⇥ pq which
can be inverted, giving access to vec(bx) and then to bx. Finally, the operator prox

⌧G

can be seen as a large matrix-vector product.
Another option consists in operating on the rows bxm of bx, since the operator A

acts on them:

(I+ ⌧A⇤A)bx = z () (I+ |bgm|
2Q)bxm = zm, 8m = 0, . . . ,M .

This time, the operator prox
⌧G

involves performing M + 1 matrix-vector products of
size q ⇥ q, which appears to be more e�cient in practice.

4.3. Extended problem formulation. We now consider a data image b] con-
taining lines with no angle restriction, which extends the previous case by relaxing the
assumption made in Hypothesis 1. We can decompose this image into the sum of two
images b] = b]

1 + b]

2, with b]

1 (resp. b]

2) containing vertical (resp. horizontal) lines,

that is with angles in (�⇡/4,⇡/4] (resp. outside this range). We can also define bx]

1 of

size (M +1)⇥HS and bx]

2 of size WS⇥ (P +1) with WS = W +2S and P = (H�1)/2

such as Abx]

1 = bb]

1 and Ãbx]

2 = bb]

2, where g2 = (0P�S ,h,0P�S) and Ã denotes the

operator which multiplies each column vector bx]

2[:, n2] by the corresponding Fourier

coe�cient bg2[n2] and convolves it with the filter h; that is, Ãbx2 = ( bG2bx2) ⇤ h with
bG2 = diag(bg2[0], . . . , bg2[P ]). We finally define the Hermitian symmetry operator S1

(resp. S2), which to each column v = (v0, v1, . . . , vM ) (resp. row v = (v0, v1, . . . , vP ))
associates the symmetric extension (v⇤

M
, . . . , v0, . . . , vM ) (resp. (v⇤

P
, . . . , v0, . . . , vP )).

Let X1 = (bx1,q1) and X2 = (bx2,q2) be the optimization variables, living in spaces
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H1 = X1⇥Q1 and H2 = X2⇥Q2. Let H = H1⇥H2, X = X1⇥X2 and Q = Q1⇥Q2.
The data fidelity term is now:

F (X1,X2) =
1

2
kF

�1
1 S1Abx1 + F

�1
2 S2Ãbx2 � yk2F=

1

2
kA1bx1 +A2bx2 � yk2F ,

with A1 = F
�1
1 S1A, A2 = F

�1
2 S2Ã, where F1 (resp. F2) is the Fourier transform

with respect to the columns (resp. rows) and k·kF is the Frobenius norm.

Proposition 10. The gradient of F is

(60) rF (X1,X2) =
1

2

✓
A1

⇤(A1bx1 +A2bx2 � y)
A2

⇤(A1bx1 +A2bx2 � y)

◆
,

which is Lipschitz-continuous of Lipschitz constant � = 1
min(W,H) .

Proof. See in Appendix H.

The image bx]

1 keeps the same kind of constraints as in the Algorithm 1, which

act similarly on the image bx]

2 in a rotated way; that is, we define

L(3)
m

(X2) = TP+1(bx2[m, :]) ,(61)

L(4)
n2

(X2) = T0

WS
(fliplr(bx2[:, n2]), fliplr(q2[:, n2])) ,(62)

where fliplr denotes a flip from left to right on each column of the matrix.
The boundary constraints on bx1 and bx2 are respectively given by:

B1 =

⇢
(bx1,q1) 2 H1 : bx1[0, n2] = bx1[0, 0] 6 c1, q1[m, 0] 6 c1

�
,(63)

B2 =

⇢
(bx2,q2) 2 H2 : bx2[m, 0] = bx2[0, 0] 6 c2, q2[P, n2] 6 c2

�
.(64)

Likewise, the inner product on spaces X2 and Q2 are:

hz1, z2iX2 =
WS�1X

m=0

z1[m, 0]z2[m, 0] + 2Re

 
PX

n2=1

WS�1X

m=0

z1[m,n2]z2[m,n2]
⇤

!
,(65)

hz1, z2iQ2 = 2Re

 
PX

n2=0

WS�1X

m=0

z1[m,n2]z2[m,n2]
⇤

!
,(66)

and so the adjoint of the operators remain the same.

Like before, we define L(3)(X2) = (L(3)
0 (X2), . . . ,L

(3)
WS�1(X2)), also L(4)(X2) =

(L(4)
0 (X2), . . . ,L

(4)
P

(X2)) and L = (L(1)
,L(2)

,L(3)
,L(4)). It is easy to show that

kLk2 6 kL(1)
k
2 + kL(2)

k
2 + kL(3)

k
2 + kL(4)

k
2
,

6 (HS + 1) + (M + 1) + (P + 1) + (WS + 1) .
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Finally, we have

(67) (X̃1, X̃2) = argmin
(X1,X2)2H

(
1

2
kA1bx1 +A2bx2 � yk2F

+ ◆B1(X1) +
MX

m=1

◆C(L
(1)
m

(X1)) +
HS�1X

n2=0

◆C(L
(2)
n2

(X1))

+ ◆B2(X2) +
WS�1X

m=0

◆C(L
(3)
m

(X2)) +
PX

n2=1

◆C(L
(4)
n2

(X2))

)
.

4.4. Inpainting problems. We now consider the case in which a binary mask
is applied on the data image, like in Figure 3. The corresponding linear operator,
denoted by M, consists in elementwise multiplication of the matrix b] with a binary
matrix, whose zero coe�cients are the indices of the pixels unavailable to observation.
We have M⇤ = M. The data fidelity term becomes F (X) = 1

2kMF
�1
1 S1Abx � yk2F,

whose gradient can be expressed as previously, with � = 1/W (since kF�1
1 k = 1/W

and kMk = 1). The constraints remain the same as in (28) and the method is also
easily transposable to the extended setting of subsection 4.3.

At this point, the first part of the process has been completed; that is, the image
bx] has been restored from the degraded image y. From this image, we can for instance
reduce the blur by applying other filters gr and hr with smaller spread and visualize
the resulting image br, passing the solution bx through this new blur operator Ar;
that is, bbr = Arbx.

5. Recovering the line parameters by a Prony-like method. In this sec-
tion, we present the method that underlies the second step of this work (see Figure 3),
namely the estimation of the line parameters, which is related to the spectral estima-
tion field. We now focus on estimating the parameters (✓k,↵k, ⌘k), which characterize
the K lines, from the solution of the minimization problem x̃ (27), extended by Her-
mitian symmetry to m = �M, . . . ,�1 beforehand. This requires the use of a classical
spectral estimation method [78, 79].

5.1. Sketch of the 1-D Prony TLS method. The recovering procedure
hereafter, based on [71], is an extended method of the famous Prony method [68].
Let us sketch this method, which is based on an annihilating property [5]. Let
z = (z0, . . . , zN�1) be a complex vector, whose components are:

(68) zi =
KX

k=1

dk

�
e j2⇡fk

�i
, 8i = 0, . . . , N � 1 ,

with dk 2 C, fk 2 [�1/2, 1/2) the parameters to retrieve and N > 2K + 1.

Let ⇣k = e j2⇡fk , we introduce the annihilating polynomial H(⇣) =
Q

K

l=1(⇣�⇣l) =P
K

l=0 hl⇣
K�l with h0 = 1. Then, we can note that for all r = K, . . . , N � 1:

(69)
KX

l=0

hlzr�l =
KX

l=0

hl

 
KX

k=1

dk⇣
r�l

k

!
=

KX

k=1

dk⇣
r�K

k

 
KX

l=0

hl⇣
K�l

k

!

| {z }
H(⇣k)=0

= 0 .
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By rearranging the elements zi in a Toeplitz matrix PK(z) of size (N �K)⇥ (K+1)
and rank K as follows:

(70) PK(z) =

0

B@
zK · · · z0
...

. . .
...

zN�1 · · · zN�K�1

1

CA ,

(69) can be written with h = (h0, . . . , hK) as:

(z ⇤ h)(r) = 0, 8r = K, . . . , N � 1() PKh = 0 .

Consequently, the method consists in finding a right singular vector h = (h0, . . . , hK)
of the matrix PK(z) associated to the singular value zero. From the SDV decom-
position PK(z) = V1⌃V⇤

2, it corresponds to the (K + 1)-th column of V1, that is

h = V1[:,K + 1]. Thus, the roots of the polynomial H(⇣) =
P

K

l=0 hl⇣
K�l are the

searched complex values ⇣k = e j2⇡fk and then fk = arg(⇣k)/(2⇡).
The Algorithm 3 below described the procedure for estimating the frequencies:

Algorithm 3 Prony

Input: z̃ = (z̃0, . . . , z̃N�1) 2 CN a vector of form (68) possibly corrupted by noise,
with N > 2K + 1 and K the number of frequencies to retrieve.

Output: {f̃k}
K

k=1 the estimated frequencies.
1: Compute the SVD decomposition Ṽ1⌃̃Ṽ⇤

2 of the matrix PK(z̃) (70)
2: Extract the (K + 1)-th right singular vector h̃ = (h̃0, . . . , h̃K)T = Ṽ1[:,K + 1].

3: Compute f̃k = arg(⇣̃k)/(2⇡), with {⇣̃k}
K

k=1 the roots of polynomial
P

K

k=0 h̃k⇣
k.

Finally, the complex amplitudes can be retrieved as well, by writing (68) in matrix
form z = Ud, where d = (d1, . . . , dK) and the matrix U of size N ⇥K is

(71) U =
�
a(f1) · · · a(fK)

�
=

0

BBBBB@

1 · · · 1
e�j2⇡f1 · · · e�j2⇡fK

e�j4⇡f1 · · · e�j4⇡fK

...
...

...
e�j2⇡(N�1)f1 · · · e�j2⇡(N�1)fK

1

CCCCCA

and we recover the amplitudes by least-squares approximation:

(72) d = (U⇤U)�1U⇤z .

5.2. Procedure of the line parameters estimation. We start with the angle
parameters estimation by applying a Prony-like method onto the rows t̃m of the output
solution x̃, since from (23) and (24) one have theoritically

(73) t]
m

= bx][m, :] =
KX

k=1

dm,ka(fm,k)
T
,

whose frequencies to estimate are related to the angles by fm,k = tan ✓k

W
m. The number

of lines can be found either by a dedicated method like the approximate Prony method

(APM) [67] or by evaluating the rank of the dual matrices TM+1(x̃[:, n2]) at the end
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of the algorithm, from the decreasing profile of their eigenvalues. The output solution
of the algorithm x̃, whose stopping criteria is met when this one is su�ciently close
to the exact solution

��x̃� bx]
�� ⌧ 1, then remains some noise. In the noiseless case,

the Prony method is always able to recover the frequencies with infinite precision, if
the number of samples N is greater than 2K. But in our case, the estimate f̃m,k is
a↵ected by some uncertainty ✏m,k; that is, f̃m,k = fm,k+✏m,k, due to the instability of
root finding in presence of noise. Then, we propose to estimate the angle parameters
by applying K linear regression to the data {f̃m,k}16m6M since

f̃m,k =
tan ✓k
W

m+ ✏m,k ,

which leads to an estimation of the slope tan ✓k and then to the angle ✓k. The errors
✏m,k committed by evaluating the frequencies fm,k have an amplitude which depends
on m. Indeed, for a small m, the frequencies fm,k = tan ✓k

W
m, are close to each other

and the Prony method fails to accurately determine the frequencies. Consequently, it
is preferable to start the linear regression with the largest values m > m0, in order to
space the frequencies on the unit circle. We have to make sure that for large values of
m, the two extremal frequencies, say fm,1 6 0 and fm,K > 0, are not close to �⇡ and
⇡, respectively, at the same time, as this would violate the separation criteria. Then,
the angles ✓̃k estimated from the K linear regressions are used to form the matrices
Ũm and to obtain the complex estimated amplitudes d̃m, by solving least-squares
linear systems (72).

Remark 8. In the preliminary version of this work [66], we proposed a simplistic

method consisting in averaging the estimates

✓̃m,k = arctan(Wf̃m,k/m) = arctan(Wfm,k/m+W ✏m,k/m) ⇡ ✓m,k +W ✏m,k/m ,

whose error is actually amplified by a factor W/m; this gives bad results, in particular

for a small m. Consequently, the mean ✓̃k = 1
M

P
M

m=1 ✓̃m,k did not lead to a robust

estimation of the angles ✓̃k.

The previous estimation process of the frequencies f̃m,k and the angle estimation
are possible, as long as the sorting process of the frequencies f̃m,k is related to the
corresponding angles ✓1 6 · · · 6 ✓k 6 · · · 6 ✓K for all m, which allows us to perform
the linear regression with respect to m. It would not be possible to do the same with
f̃n2,k = (n2 tan ✓̃k � ⌘̃k)/W to estimate the o↵sets ⌘k, performing the Prony method
on the columns, because the a�ne relation does not preserve the order (one can find
n and n

0 such that f̃n,k1 6 f̃n,k2 and f̃n0,k1 > f̃n0,k2).
The frequencies are not uniquely determined, as they belong to an interval of

length greater than one f̃n2,k 2 [�(HS + M)/W, (HS + M)/W ] and above all we
would lose the correspondence between the f̃n2,k and the previous estimated angles
✓̃k, which compromises the estimation of the ⌘k. Thus, the solution is to perform the
Prony method on the estimated vectors ẽk = {ẽm,k}

M

m>m0
, noticing from (24) that

dm,k/|dm,k| =
⇣
e�j2⇡⌘k/W

⌘m
,

which leads to the frequency estimation of a single sampled exponential. This way,
the correspondence between the angles ✓̃k and the o↵sets ⌘̃k is preserved.
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Finally, regarding the amplitudes ck, taking the modulus of the d̃m,k’s leads to
inaccurate estimates, since they are computed from the solution x̃ and their ampli-
tudes have been shrunk, due to the choice of a parameter c < c

] to remove noise.
Like often with variational methods, this yields a bias towards zero and yields images
with a loss of contras; that is, the line intensities are globally smaller. That is why we
propose to perform a refitting step, to recover the amplitudes in a better way. Given
the estimated 2-D atoms 1

cos ✓̃k
a2D(✓̃k, ⌘̃k), we evaluate the amplitudes ↵̃k by applying

least-squares estimation to the noisy data by:

(74) (↵̃1, . . . , ↵̃K) = argmin
↵1,...,↵K

�����

KX

k=1

↵kÃk � by

�����

2

, Ãk =
1

cos ✓̃k
Aa2D(✓̃k, ⌘̃k) .

The procedure is summarized Algorithm 4 and is illustrated in Figure 5:

Algorithm 4 Extraction of line parameters

Input: x̃ solution of the optimization problem (27) under constraints (28)
Output: {✓̃k}

K

k=1, {⌘̃k}
K

k=1 and {↵̃k}
K

k=1 the estimated parameters of the lines x].
1: Estimate K via APM or the rank of the matrices TM+1(x̃[:, n2]).
2: for m = 1 to M do
3: Extract the row t̃m = x̃[m, :].
4: Compute {f̃m,k}

K

k=1  Prony(t̃m,K) and sort the frequencies with resp. to k.
5: end for
6: for k = 1 to K do
7: Perform a linear regression on {f̃m,k}

M

m>m0
to estimate tan ✓̃k and then ✓̃k.

8: end for
9: for m = 1 to M do

10: Form the matrix Ũm = (a(tan ✓̃1m/W ) · · ·a(tan ✓̃Km/W )).
11: Compute the vector d̃m = (d̃m,1, . . . , d̃m,K)T = (Ũ⇤

m
Ũm)�1Ũ⇤

m
t̃m.

12: Compute the normalized values ẽm,k = d̃m,k/|d̃m,k|.
13: end for
14: for k = 1 to K do
15: Form the vector ẽk = (ẽm,k)Mm>m0

.
16: Compute ⌘̃k  W ⇤Prony(ẽk, 1).
17: end for
18: Evaluate the amplitudes {↵̃k}

K

k=1 by solving the least-squares problem (74).

6. Other related works and further comments. Below we discuss other
approaches to estimate line parameters and discuss their e↵ectiveness:

• There exist sophisticated methods, called debiasing methods [12, 32, 33], which
could be considered to recover the line intensities ↵k, instead of the least-squares
method (74) used here.

• For recovering the o↵sets ⌘k, we also could apply the Prony method on the
middle line (n2 = 0) of the image x̃, since from (22) we have

(75) l]0[m] =
KX

k=1

cke
j2⇡⌘km/W
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Ũ0

...

Ũm
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ẽM,k

⌘̃k↵̃k

4

4

4

11

11

11

12

12

12

K

7 16

18

Fig. 5. Parameters extraction procedure illustrating the Algorithm 4.

and since the arguments of these exponentials are uniquely determined. Provided
that the latter frequencies are well separated, it would give a better estimation of
the o↵sets ⌘̃k, but the correspondence with the angles ✓̃k would be lost, as mentioned
previously. To reconnect them, one could rely on the work of [67] (or equivalent [64]),
noticing that

bx][m,n2] =
KX

k=1

↵k

cos ✓k
ej2⇡(n2 tan ✓k�⌘k)

m

W =
KX

k=1

↵k

cos ✓k
e
j2⇡m

D
(n2
�1)(

tan ✓
k
/W

⌘
k
/W

)
E

are the samples (indexed bym) of the Fourier transform of
P

K

k=1
↵k

cos ✓k
�(tan ✓k/W,⌘k/W )

(denoted by h0) along radial lines indexed by n2, that is h0(mn2,m) = bx][m,n2].
One could exploit this information to couple the right frequencies (tan ✓k/W, ⌘k/W )k
among all the possibilities {(tan ✓k1/W, ⌘k2/W ) : k1, k2 = 1, . . . ,K}, using the esti-
mated frequencies along the radial lines h0(mn2,m); that is, using the Prony method
along columns of x̃.

This procedure, called sparse approximate Prony method (SAPM), requires the
use of samples along lines h0(n, 0), h0(0, n), h0(n,↵n+ �) for n 2 ZN = [�N,N ] \ Z
and ↵,� 2 Z, conveniently chosen. Therefore, it first requires to separately estimate
the frequencies along the horizontal axis h0(n, 0) and the vertical axis h0(0, n), before
coupling them through the lines h0(n,↵n + �). We get the frequencies ⌘k/W along
one axis, since from (75) we have h0(0,m) = l]0[m] = bx][m, 0]. However, we do not
directly have access to h0(n, 0) from bx] for estimating the tan ✓k/W . We admittedly
have these frequencies appearing on the first row bx][1, :], but they are clustered and
badly separated on this one. Consequently, it is better to use our procedure for esti-
mating the angles, which exploits the other rows for larger index m, in order to space
the frequencies before applying the Prony method; this is reminiscent of the strategies
of decimation developed in [29, 11, 2]. Moreover, our proposed method to estimate
the o↵sets ⌘k deals with the rows and columns jointly and automatically preserves the
correspondence, without having to restore it a posteriori. This is less arbitrary than
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performing the Prony method on l]0 (75), which requires well-separated frequencies
on this column; this is a meaningless condition, since the lines can intersect the x–axis.

• The authors of [36] proposed a convex approach to the recovery of a superpo-
sition of point sources from samples of its Fourier transform along radial lines. They
also emphasize the equivalence between working with the radial Fourier coe�cients
and working with its Radon projections, according to the Fourier slice theorem. An
important question is then how many lines (or projections) and samples are needed
to obtain an exact reconstruction. The authors of [74] show that K points can theo-
retically be determined by the projection onto K+1 distinct lines through the origin.
In [64], it was conjectured that under certain additional assumptions, it is possible to
choose only four lines passing through the origin to guarantee a unique reconstruction,
but this conjecture has been shown to be false in [34]. These authors cast the problem
into a nonconvex optimization problem for which there are guarantees for recovering
the points, but this constrained optimization problem is NP-hard. Finally, the authors
of [36] give a total variation minimization formulation of the problem. Like in [64],
where the radial line of angle ✓ is chosen to maximize the minimal distance between
two projections onto it, the authors show the crucial role of the minimal separation
distance ⌫min(�✓) between the projected positions �✓ = {h✓, xki}

K

k=1. Thus, they
proved that for a set of radial measurements ⇥ 2 S1 for which the global minimal sep-
aration distance is ⌫min = inf✓2⇥ ⌫min(�✓), total variation minimization has a unique
solution achieved by their algorithm from 3 di↵erent radial lines of ⇥ and a sampling
set ZN with N > 2/⌫min. These results provide strong guarantees, but the framework
is quite di↵erent from ours, especially because the unit sampling step is constant
on every radial line, while in our case the samples are taken on points (mn2,m).
Moreover, the frequencies along these lines can easily collide, which contradicts the
separation assumption on the projected positions. Finally, a common point between
our two-step super-resolution recovery of lines and the references cited above is that
all these methods come down to 1-D settings, based on a su�cient separation property.

• A final approach might be to apply the Radon transform to the noisy blurred
lines y = b] + ✏, which somehow transform blurred lines to blurred peaks, repre-
senting in Figure 1b by 2-D point sources in the Radon domain. Then, we come
down to a classical 2-D spikes super-resolution problem, with on the one hand a noise
amount which is somehow reduced [58] and on the other hand a minimal separation
infk 6=l dist(✓k, ✓l), which is better than the one we have with the frequencies tan ✓k/W
of x̃. However, the main drawback is that the Radon transform is performed on the
data image y of blurred and noisy lines, which is finite and discrete, so that it pro-
duces some artifacts like “Butterfly patterns” (see Figure 1) [30, 48, 49], due to the
finite length of lines. Moreover, they induce discrete other approximations due to the
projections on a grid [87]. These problems are avoided with our model and assump-
tions, which yields an o↵-the-grid super-resolution estimation of the parameters and
outperforms the naive approaches using the Radon (or Hough) transform.

7. Experimental results. The reconstruction procedure was implemented in
matlab™ code, available on the webpage of the first author. We consider an image of
size W = H = 65, containing three lines of parameters (✓1, ⌘1,↵1) = (�⇡/5, 0, 255),
(✓2, ⌘2,↵2) = (⇡/16,�15, 255) and (✓3, ⌘3,↵3) = (⇡/6, 10, 255). We consider the nor-
malized filter h approximating a Gaussian function of standard deviation ; that is,
'2 : t 7! (2⇡2)�1/2 exp(�t2/(22)), on the compact set [�S, S] with S = d4e � 1;
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Fig. 6. Log-log plot of the relative errors kbx�bx]kX
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and
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for the first experiment.

and the normalized filter g = (0M�S ,h,0M�S), whose DFT is an interpolation of bh,
which approaches the continuous Fourier transform b'2 : ⌫ 7! exp(�2⇡2


2
⌫
2). Then,

kbgk1 = kbhk1 = 1. We use the Algorithm 2 for solving the optimization problem
(44) and recovering the lines in the following experiments:

• The first experiment consists in the reconstruction of the lines from x̃ in absence
of noise, (1) by applying the operator A on this solution, possibly with other kernels
gr and hr and then taking the 1-D inverse Fourier transform; and (2) by applying the
Prony method to recover the parameters of the lines, in the aim to display the lines by
vectorial drawing. We run the algorithm for 106 iterations. Results of relative errors
for the solution x̃ and the estimated parameters are given in Figure 6 and Table 1,
where �✓i

/✓i = |✓i�✓̃i|/|✓i|, �↵i
/↵i = |↵i�↵̃i|/|↵i| and �⌘i

= |⌘i�⌘̃i|. Although the
algorithm is slow to achieve high accuracy, convergence is guaranteed and we observe
empirically perfect reconstruction of x], when the lines are not too close to each other.

• The purpose of the second experiment is to show the robustness of the method
in presence of a strong noise level (Figure 7a). With c = c

]
/3 and only 2.103 itera-

tions, we are able to completely remove the noise and to estimate the line parameters
with an error of 10�2.

• Finally, the third experiment, with 105 iterations, illustrates the e�ciency of
the method even in presence of a large blur (Figure 7b), yielding an error of 10�4.
For both experiments, the estimated images corresponding to step (1) and (2) are
visually identical and are displayed in Figure 7c and Figure 7d.

We emphasize that our algorithm has a much higher accuracy than what is
achieved by peak detection after the Hough or Radon transform. These methods
are relevant for giving a coarse estimation of line parameters. They are robust to
strong noise, but completely fail with a strong blur, which prevents peak detection
(see Figure 8). Notice that even by decreasing the discretization steps of the process,
we rapidly reach a plateau, as illustrated by Figure 9. This method is limited in ac-
curacy by the pixel grid. By contrast, our super-resolution method makes it possible
to achieve infinite precision for the line parameters.
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(a) (b) (c) (d)

Fig. 7. (a) An image y = b
] + ✏ of three lines x], blurred by a Gaussian kernel � with spread

 = 1 and corrupted by a strong noise ✏ ⇠ N (0, ⇣) with ⇣ = 200, for the second experiment, (b) with
a strong blur ( = 8) and no noise (⇣ = 0) for the third experiment, (c) the denoised image b̃, (d)
a vectorial drawing of the estimated lines of x] by the Prony-like method.

Table 1
Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

�✓/✓ (10�7, 3.10�6, 7.10�7) (10�2, 6.10�2, 9.10�2) (6.10�7, 9.10�5, 8.10�6)

�↵/↵ (10�7, 10�7, 10�7) (10�2, 9.10�2, 2.10�1) (4.10�5, 2.10�5, 2.10�5)

�⌘ (4.10�6, 7.10�6, 7.10�6) (5.10�2, 4.10�2, 3.10�2) (5.10�5, 10�4, 3.10�4)

7.1. Closing lines. For a reasonable amount of noise (⇣ = 20), the algorithm
succeeds in separating two close lines (✓1, ⌘1,↵1) = (�0.73,�1, 255) and (✓2, ⌘2,↵2) =
(�0.75, 1, 255) as illustrated in Figure 10. The estimation of the parameters gives
(✓̃1, ⌘̃1, ↵̃1) = (�0.725,�0.7, 237) and (✓̃2, ⌘̃2, ↵̃2) = (�0.753,�0.6, 251).

7.2. More lines and di↵erent amplitudes. A more complicated example is
depicted in Figure 11a, containing seven well-separated lines whose parameters are
enumerated in Table 2, corrupted by some noise with variance ⇣ = 20. We run the
algorithm with c = 0.8c], ⌧ = 1, � = (⌧(M+HS+2))�1 and after only 2.103 iterations,
we are able to denoise the image as illustrated in Figure 11b and to estimate the line
parameters, with the proposed Prony procedure, as illustrated in Figure 11d, with an
error of 10�2, as reported in Table 3.

7.3. General case. We consider an image y = b] + ✏ composed as four noisy
blurred lines ( = 1 and ⇣ = 20) whose two of them are rather vertical (i.e with angle in
(�⇡/4,⇡/4]), while the two other ones are rather horizontal. The extended algorithm
presented in subsection 4.3, provides after n = 6 · 104 iterations the denoised images
depicted in Figure 12. It acts as an angles selector according to the horizontality and
verticality: the rather vertical lines are gathered in the reconstructed image b̃1 (see
Figure 12b) and the rather horizontal lines are gathered in the reconstructed image
b̃2 (see Figure 12c), so that b]

⇡ b̃1 + b̃1, which validates the procedure.

7.4. Inpainting. We consider occluded lines with a mask M as described in the
subsection 4.4. In Figure 13, we occlude a portion of the blurred line ( = 1) by
applying a square mask M in the middle. We run the optimization algorithm and
visualize the Figure 13a to Figure 13d, that is the evolution of the reconstruction
after n = 2.103, n = 104 and n = 106 iterations. We can see that the method is able
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Fig. 8. The Radon transform of the image y for Experiments 1, 2 and 3. The true parameters
of the lines are in green.
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(a) (b) (c) (d)

Fig. 10. (a) An image y = b
] + ✏ of two closed lines x], blurred by a Gaussian kernel � with

spread  = 1 and corrupted by noise ✏ ⇠ N (0, 20) (b) the denoised image b̃, (c) the ground truth
image b

] (d) a vectorial drawing of the estimated lines of x] by the Prony-like method.

Table 2
Angles, o↵sets and amplitudes of the seven lines.

✓k �0.75 �0.5 �0.25 10�3 0.3 0.55 0.75
⌘k 15 25 2 7 �20 �5 �10
↵k 60 80 255 100 180 120 240
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(a) (b) (c) (d)

Fig. 11. (a) An image y = b
]+✏ of seven well-separated lines x], blurred by a Gaussian kernel

� with spread  = 1 and corrupted by noise ✏ ⇠ N (0, 20) (b) the denoised image b̃, (c) the ground
truth image b

] (d) a vectorial drawing of the estimated lines of x] by the Prony-like method.

Table 3
Errors on line parameters recovered by the proposed method.

�✓ 1.10�2 2.10�2 1.10�3 2.10�3 5.10�3 5.10�3 1.10�3

�⌘ 5.10�1 7.10�2 4.10�2 1.10�1 1.10�2 2.10�2 1.10�2

�↵/↵ 4.10�2 5.10�2 5.10�3 4.10�2 6.10�3 1.10�2 4.10�3

to reconstruct the part of line occluded thanks to the information available outside
the mask and to the optimization constraints related to the line structure. In the
same way, Figure 13e to Figure 13h enable to visualize the “di↵usion process” of the
information within the occluded part in the Fourier domain. Finally, the experiment
is carried out for an image containing three occluded lines, either by a bigger mask in
Figure 14a, or by a mask whose binary inputs were drawn randomly Figure 14b. In
both cases the lines are successfully reconstructed as in Figure 14c.

8. Conclusion. We proposed a new variational formulation for the problem of
recovering lines in degraded images, using the framework of atomic norm minimiza-
tion. A primal-dual splitting algorithm has been used to solve the convex optimization
problem. We applied it successfully to several image restoration problems, recovering
lines parameters by the Prony method and we showed the robustness of the method
to strong blur and strong noise level. We insist on the novelty of our approach, which
is to estimate lines with parameters (angle, o↵set, amplitude) living in a continuum,
with perfect reconstruction in absence of noise, without being limited by the discrete
nature of the image, nor its finite size. This work can be viewed as a proof of concept
for super-resolution line detection and invites us to revisit the Hough transform in a
continuous way. Many theoretical questions remain open, like the study of the separa-
tion conditions under which perfect reconstruction can be guaranteed. The robustness
of the method needs to be theoretically studied and would requires a statistical anal-
ysis ; this is left for future work. From a practical point of view, parallel computing
would be welcome to speed up the proposed algorithm. We should also investigate
the possibility of relaxing the periodicity and bandlimitedness assumptions, possibly
by solving a convex feasibility program without any regularizers [39, 38]. At the time
of finalizing this paper, we became aware of the two other recent papers [7] and [40];
we leave for future work the study of their relationship to the setting considered here.
In subsequent work, we plan to apply the proposed approach to biomedical images
containing curved structures, like tubulins, by operating on small overlapping patches.
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(a) (b) (c)

Fig. 12. (a) An image y = b
] + ✏ of four well-separated lines x], blurred by a Gaussian kernel

� with spread  = 1 and corrupted by noise ✏ ⇠ N (0, 20), two of them being rather vertical (angle
in (�⇡/4,⇡/4]) and the two other ones rather horizontal, (b) the reconstructed image b̃1, (c) the
reconstructed image b̃2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. (a) An image y = b
] + ✏ of one line x], blurred by a Gaussian kernel � with

spread  = 1, no noise and a small square mask M, (b) reconstruction of b̃ by inpainting after
2 · 103 iterations, (c) after 104 iterations, (d) at convergence ; (e)-(f)-(g)-(h) the corresponding
reconstructions of bx in the Fourier domain over iterations.

(a) (b) (c)

Fig. 14. (a) An image y = b
] + ✏ of three line x], blurred by a Gaussian kernel � with spread

 = 1, no noise and a large square mask M, (b) with a random mask and (c) their reconstruction
at convergence.
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Appendix A. Characterization of the sampling process.
Formally, we can write x

]
⇤ � = (x]

⇤ �1) ⇤ �2 with �1(t1, t2) = '1(t1)�(t2) and
�2(t1, t2) = �(t1)'2(t2), where '1 and '2 are L

1 functions. So, after the first hori-
zontal convolution, using the fact that �(at) = �(t)/|a| for any a 6= 0, we obtain the
function:

(76) u
] = x

]
⇤ �1 : (t1, t2) 7!

KX

k=1

↵k

cos ✓k
'1

⇣
t1 � ⌘k + t2 tan ✓k

⌘
.

We can show that, after the second vertical convolution, we get the function b
] ob-

tained in (6). Figure 15 explains our notations in more details and illustrates the
relation between all continuous and discrete variables. In the following we consider a
weaker version of Assumption (ii) about '2:

Assumption (ii’) '2 2 L
1(R) is such that

R
R '2(t2) dt2 = 1. Denoting sinc(t2) =

sin(⇡t2)/(⇡t2) the sinus cardinal with sinc(0) = 1, we make the assumption that the
discrete filter

(77)
�
h[n] = ('2 ⇤ sinc)(n)

�
n2Z ,

has compact support of length 2S + 1, for some S 2 N; that is,

h[n] = 0, if |n| > S + 1 .

Remark 9. Note that if '2 is bandlimited, we simply have h[n] = '2(n), which
reverts back to Assumption (ii).

Let us deduce from these assumptions some other properties satisfied by '1 and '2

and their associated discrete filters g and h. First, we have the following proposition:

Proposition 11 (Nyquist–Whittaker–Shannon). The function '1, which is pe-

riodic and bandlimited, is determined by W degrees of freedom only. That is, with the
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coe�cients g[n] = '1(n), n = 0, . . . ,W � 1, the function '1 is a linear combination

of shifted Dirichlet kernels DM (t) =
P

M

m=�M
e jmt

:

(78) '1(t) =
1

W

W�1X

n=0

g[n]DM

✓
2⇡(t� nW )

W

◆
, 8t 2 R .

Proof. Let us start with the following classical theorem; in our notations:

Theorem 12 (Nyquist Whittaker-Shannon). Let f be a T -periodic function and

cm(f) = 0 for |m| > M + 1. Then f can be reconstructed from the regular sampling

{f(ka), k = 0, 1, ..., 2M}, where a = T

2M+1 is the sampling rate, in this way:

(79) f(x) =
1

2M + 1

2MX

k=0

f(ka)DM

✓
2⇡

T
(x� ka)

◆
,

where DM is the Dirichlet Kernel:

(80) DM (x) =
MX

m=�M

e jmx =
sin
�
(M + 1

2 )x
�

sin x

2

.

Applying to '1 which isW -periodic and cm('1) = 0 for |m| > M+1 with 2M+1 = W ,
then a = 1 and the Nyquist theorem leads to:

(81) '1(t) =
W�1X

n=0

'1(n)
sin⇡(t� n)

W sin
⇣

⇡(t�n)
W

⌘ .

Consequently, we give this explicit formula g[n] = '1(n) and bg[n] = cn�M ('1) for
n = 0, 1, ..., 2M . By the simple change of variable n n�M , one can also obtain:

(82)
MX

n=�M

'1(n)
sin⇡(t� n)

W sin
⇣

⇡(t�n)
W

⌘ .

Then,

1

W

Z
W

0
'1(t) dt =

1

W

MX

n=�M

g[n] = 1 ,

that is, the filter g is normalized as well. Moreover

Z
W

0
'1(t)

2 dt =
MX

n=�M

g[n]2 =
MX

n=�M

'1(n)
2
,

and by Parseval relation:

X

m2Z
|cm('1)|

2 =
MX

m=�M

|bg[m]|2 =
1

W

Z
W

0
'1(t)

2 dt .

Now, we describe the sampling process leading from continuous to discrete formula-
tion, based on the following proposition:
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Proposition 13. It is equivalent to perform the vertical convolution of u
] =

x
]
⇤�1 with '2, with '2 ⇤ sinc, or with the Dirac comb � : t2 7!

P
S

n=�S
h[n]�(t2�n),

where h[n] = ('2 ⇤ sinc)(n).

Proof. Due to Hypothesis 1, the assumption ✓k 2 (�⇡/4,⇡/4] yields | tan ✓k| 6 1
for every k = 1, . . . ,K. So, the function u

] given in (76), as a function of t2 at
fixed t1, is bandlimited: for every t1 2 [0,W ), the Fourier transform F2u

] : !2 7!R
R u

](t1, t2)e�j2⇡!2t2 dt2, which is a distribution (sum of K Dirac combs), is zero for
every |!2| > 1/2. Indeed, we have:

[F2u
]](!2) =

KX

k=1

↵k

sin ✓k
b'1

✓
!2

tan ✓k

◆
exp

✓
j2⇡!2

t1 � ⌘k

tan ✓k

◆
.

Since | tan ✓k| 6 1, we have |!2/ tan ✓k| > |!2|. The support of b'1 is included in
[�1/2, 1/2] (cm('1) = 0 for |m| > M + 1 and M/W < 1/2), as well as the support of
F2u

] which is necessarily included in the support of b'1. Then, we have the equivalence
F2u

] = F2u
]
·1[�1/2,1/2] , u

] = u
]
⇤ sinc and furthermore u]

⇤'2 = u
]
⇤ ('2 ⇤ sinc). In

the Fourier domain, the function h = '2 ⇤ sinc is bandlimited, so [F2u
]]bh = [F2u

]]bhper

where bhper corresponds to the periodization of the spectrum of bh with period 1, which
amounts to saying that

u
]
⇤ h = u

]
⇤

 
X

n

h[n]�(·� n)

!
.

Remark 10. Assumption (ii’) implies that the filter (h[n])n should have compact

support, but we can note that the function h = '2⇤sinc does not have compact support,

since it is bandlimited. This means that the continuous function h has to vanish

at integer points t = n for |n| > S. Given such a compact filter (h[n])S
n=�S

, the

unique bandlimited function h satisfying these conditions is obtained by the Shannon

interpolation formula:

h(t) =
SX

n=�S

h[n] sinc(t� n) .

By uniqueness, we necessarily have '2 ⇤ sinc = h and we can notice that there always

exists a bandlimited solution '2 of this equation, which is simply '2 = h. In practice,

we can always approximate a PSF by a bandlimited function h, with 2S + 1 samples

h[n] of this PSF; that is why we argued in Assumption (ii) that the compact support

assumption is not restrictive.

Now, to obtain the discrete image b] of (5), let us first define u] by sampling u = x
]
⇤�1

with unit step:

(83) u][n1, n2] = (x]
⇤�1)(n1, n2), 8n1 = 0, . . . ,W �1, n2 = �S, . . . ,H�1+S .

With the above assumptions and Proposition 13, we can express b] from u] using a
discrete vertical convolution with the filter h:

(84) b][n1, n2] =
SX

p=�S

u][n1, n2�p]h[p], 8n1 = 0, . . . ,W �1, n2 = 0, . . . , H�1 .
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Altogether, we completely and exactly characterized the sampling process, which
involves a continuous blur �, using the two discrete and finite filters (g[n])W�1

n=0 and
(h[n])S

n=�S
.

Appendix B. Proof of Proposition 1. First, we consider the image bu]

obtained by applying the 1-D DFT on every column of u] (see (83)):

bu][m,n2] =
1

W

W�1X

n1=0

u][n1, n2]e
�j 2⇡m

W
n1 ,(85)

8m = �M, . . . ,M, n2 = �S, . . . ,H � 1 + S ,

which are the exact Fourier coe�cients of the function t 7! (x]
⇤ �1)(t, n2), following

Assumption (i). Hence, from (76) and bu][m,n2] =
1
W

R
W

0 (x]
⇤ �1)(t, n2)e�j 2⇡m

W
t dt,

we obtain:

(86) bu][m,n2] = bg[m]bx][m,n2], 8m = �M, . . . ,M, n2 = �S, . . . ,H � 1 + S .

Now we apply a 1-D DFT on the first component of the discrete image b] (see (84)),
leading to the elements

(87) bb][m,n2] =
�
bu][m, :] ⇤ h

�
[n2], 8m = �M, . . . ,M, n2 = 0, . . . , H � 1 .

Following (86) and (87), as illustrated in Figure 15, we have

Abx] = bb]
,

which concludes the proof.

Appendix C. Proof of Proposition 3.
Let us introduce

(88) SDP(z) = inf
q2CN ,q0>0

⇢
q0 : T0

N
(z, q) =

✓
TN (q) z
z⇤

q0

◆
< 0

�
.

We want to prove that SDP(z) = kzk
A

and that the minimum in (88) is achieved.

• Suppose that z =
P

K

k=1 cka(fk,�k), with ck > 0.

Let us define q =
P

K

k=1 cka(fk), with q = (q0, q1, . . . , qN�1). Then q0 =
P

K

k=1 ck.
For i = 0, . . . , N � 1, the atoms a(fk) have elements [a(fk)]i = e j2⇡fki, hence

TN (a(fk)) =

0

BBB@

1 e�j2⇡fk · · · e�j2⇡fk(N�1)

e j2⇡fk 1 · · · e�j2⇡fk(N�2)

...
...

. . .
...

e j2⇡fk(N�1) e j2⇡fk(N�2)
· · · 1

1

CCCA
,

=

0

BBB@

1
e j2⇡fk

...
e j2⇡fk(N�1)

1

CCCA
�
1 e�j2⇡fk · · · e�j2⇡fk(N�1)

�
,

= a(fk)a(fk)
⇤
.
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We deduce that

TN (q) =
KX

k=1

ckT(a(fk)) ,

=
KX

k=1

cka(fk)a(fk)
⇤
,

=
KX

k=1

cka(fk,�k)a(fk,�k)
⇤
.

Therefore, the matrix

✓
TN (q) z
z⇤

q0

◆
=

KX

k=1

ck

✓
a(fk,�k)

1

◆✓
a(fk,�k)

1

◆⇤

is positive semidefinite. Given q0 =
P

K

k=1 ck, we get SDP(z) 6PK

k=1 ck.
Since this holds for any decomposition of z, we conclude that SDP(z) 6 kzkA.

• Conversely, let q 2 CN be a vector such that q0 > 0 and

✓
TN (q) z
z⇤

q0

◆
< 0.

In particular we have TN (q) < 0. We denote by r the rank of TN (q). Theorem 2
ensures that TN (q) < 0 and is of rank r 6 N , if and only if there exists dk > 0 and
distinct fk, such that

q =
rX

k=1

dka(fk) ,(89)

q0 =
rX

k=1

dk .(90)

Let us set D = diag(d1, . . . , dr) and

V =
�
a(f1) · · · a(fr)

�
=

0

BBBBB@

1 1 · · · 1
e j2⇡f1 e j2⇡f2 · · · e j2⇡fr

e j2⇡f12 e j2⇡f22 · · · e j2⇡fr2

...
...

...
...

e j2⇡f1(N�1) e j2⇡f2(N�1)
· · · e j2⇡fr(N�1)

1

CCCCCA
.

By linearity of the operator TN :

TN (q) =
rX

k=1

dkTN (a(fk)) ,

=
rX

k=1

dka(fk)a(fk)
⇤
,

= VDV⇤
.

Since TN (a(fk)) contains only ones on the diagonal, we have

1

N
tr(TN (q)) =

rX

k=1

dk > 0 .
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Besides, 1
N
tr(TN (q)) = q0, therefore q0 > 0.

Let be M a general block matrix M =

✓
A B
B⇤ C

◆
, the Schur complement gives

[ C � 0)M < 0 ] =) [ A�BC�1B⇤ < 0 ] .

We apply this lemma to M =

✓
TN (q) z
z⇤

q0

◆
, with A = TN (q), B = z and C = q0.

The left term is satisfied by hypothesis, hence

TN (q)� q
�1
0 zz⇤ < 0 () VDV⇤

� q
�1
0 zz⇤ < 0 .

We define the square matrix Vr by extracting the r first rows and columns of V,
which is a Vandermonde matrix, whose determinant is

det(Vr) =
Y

16k<l6r

(a(fl)� a(fk)) .

Since we assumed fk 6= fl, 8k 6= l, Vr is invertible and rank(V) = r. Let us define
v : Cr

! CN and v⇤ : CN
! Cr the linear operators corresponding to matrices V

and V⇤. We have rank(v⇤) = rank(v) = r. By the rank-nullity theorem:

dim(ker v⇤) = N � r .

Thus, there exists a vector p 2 CN such that p 6= 0 and V⇤p = 0 , p⇤V = 0.
Consequently,

p⇤(VDV⇤
� q

�1
0 zz⇤)p > 0, (p⇤V)D(V⇤p)� q

�1
0 p⇤zz⇤p > 0 ,

, q
�1
0 kp

⇤zk22 6 0 ,

, kp⇤zk22 = 0 ,

, p⇤z = 0 ,

, p ? z .

Since p 2 ker v⇤, then z 2 (ker v⇤)? = Im v, so there exists a vector w 2 Cr such
that z = Vw =

P
r

k=1 wka(fk), hence

VDV⇤
� q

�1
0 Vww⇤V⇤ < 0 .

Besides, Im v⇤
⇢ Cr and dim(Im v⇤) = rank(v⇤) = r = dim(Cr), thus Im v⇤ = Cr

and v⇤ is surjective. Consequently, there exists a vector u 2 CN such that V⇤u =
sgn(w) = (w1/|w1|, . . . , wr/|wr|)T and

u⇤(VDV⇤
� q

�1
0 Vww⇤V⇤)u > 0, (u⇤V)D(V⇤u)� q

�1
0 (u⇤V)ww⇤(V⇤u) > 0 ,

, sgn(w)⇤Dsgn(w)�
1

q0
sgn(w)⇤ww⇤sgn(w) > 0,

,

rX

k=1

dk

����
wk

|wk|

����
2

� q
�1
0

 
rX

k=1

w
⇤

k

|wk|
wk

!2

> 0 ,

, q
2
0 >

 
rX

k=1

|wk|

!2

, (since q0 =
rX

k=1

dk) ,

, q0 >
rX

k=1

|wk| > kzkA ,
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by definition of the atomic norm (19). Taking the infimum leads to SDP(z) > kzkA.

• Finally, let us show that the infimum of the linear form ` : q 7! q0 is achieved
on the set

A(z) =

⇢
q 2 R+

⇥ CN�1 : T0

N
(z, q) =

✓
TN (q) z
z⇤

q0

◆
< 0

�
;

that is,

(91) SDP(z) = inf
q2A(z)

`(q) = min
q2A(z)

`(q) .

(i) Let us notice that since q 2 A(z) implies TN (q) < 0 then

`(q) = q0 =
1

N
tr(TN (q)) =

N�1X

i=0

�i > 0 ,

with �i the eigenvalues of TN (q) which are positive reals.

(ii) First we show that A(z) is nonempty, since q = (kzk2, 0, . . . , 0)T 2 A(z). Indeed
for a fixed vector z = (z0, . . . , zN�1) 2 CN , v = (v0, . . . , vN ) 2 CN+1 and v0 =
(v0, . . . , vN�1) 2 CN we have for this q :

v⇤

✓
TN (q) z
z⇤

q0

◆
v = kzk2kvk

2
2 + 2Re

 
vN

N�1X

i=0

ziv
⇤

i

!
,

> kzk2kvk22 � 2|vN ||hz,v0
i| ,

> kzk2kvk22 � 2|vN |kzk2kv
0
k2 ,

> kzk2(kv0
k
2
2 � 2|vN |kv0

k2 + |vN |
2) ,

> kzk2(kv0
k2 � |vN |)2 ,

> 0 .

Then q = (kzk2, 0, . . . , 0)T 2 A(z) and q0 = kzk2, which means that A(z) is nonempty
and the set {`(q) : q 2 A(z)} ⇢ R+ is nonempty, so it admits a lower bound less than
or equal to kzk2, hence

0 6 SDP(z) = inf
q2A(z)

`(q) 6 kzk2 .

(iii) From (ii), we have

SDP(z) = inf
q2A(z)

`(q) = inf
B(z)

`(q) ,

where
B(z) = {q 2 A(z), q0 6 kzk2} ⇢ A(z) .

Now, from (89) and (90) we can show that B(z) is bounded since:

8q 2 A(z), kqk2 6
rX

k=1

dk ka(fk)k2 6
p

N

rX

k=1

dk =
p

Nq0 ,
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hence
8q 2 B(z), kqk2 6

p

Nq0 6
p

Nkzk2 .

Consequently,
B(z) ⇢ Bk·k2

(0, kzk2) .

(iv) Moreover, A(z) = T0

N
(z, ·)�1(C) is a closed set since the cone of positive matrix

C is closed and the mapping T0

N
(z, ·) is linear, so it is continuous in finite dimension.

Thus,
B(z) = A(z) \

�
q 2 R+

⇥ CN�1 : q0 6 kzk2
 

is a closed set, as the intersection of two closed sets.

(v) From (iii) and (iv), we conclude that B(z) is a compact set and that the function
`, which is linear and then continuous, achieves its minimum on B(z) so on A(z),
which proves the result (91).

Appendix D. Proof of Proposition 4.
The proof of the direct implication is straightforward. Let us consider the converse

one.
By Theorem 2, since 8n,TM (ln) < 0 and is of rank one, then there exists �n > 0

and fn 2 [0, 1[ such that

ln[m] = �n exp(j2⇡fnm) .

Since we assume 8n, bx[0, n] = bx[0, 0] = c1, then ln[0] = l0[0] = c1, we have

(92) ln[m] = c1 exp(j2⇡fnm) .

Let m be fixed. The Prony matrix P1(tm) of size 2⇥ (N � 1)

P1(tm) =

0

B@
tm[1] tm[0]
...

...
tm[N � 1] tm[N � 2]

1

CA

is of rank one, consequently there exists �m 2 C such that

tm[n+ 1] = �mtm[n], 8 0 6 n 6 N � 2 .

Thus,

tm[n] = �
n

m
tm[0], 8 0 6 n 6 N � 1 .

From (92) tm[0] = l0[m] = c1 exp(j2⇡f0m), tm[1] = l1[m] = c1 exp(j2⇡f1m) and then

�m =
tm[1]

tm[0]
=
`1[m]

`0[m]
= exp(j2⇡(f1 � f0)m) .

Therefore, we have

tm[n] = �
n

m
tm[0] ,

= exp(j2⇡(f1 � f0)m)nc1 exp(j2⇡f0m) ,

= c1 exp[j2⇡((f1 � f0)n+ f0)m] .
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Appendix E. Proof of Proposition 8.
For z = (z0, . . . , zN�1) 2 R ⇥ CN�1 and M 2 TN ⇢MN a Hermitian Toeplitz

matrix of dimension N . We have:

hTN (z) , Mi
M

=
X

06i,j6N�1

[TN (z)]⇤
ij
Mij ,

=
X

06i6j6N�1

zj�iMij +
X

06j<i6N�1

z
⇤

i�j
Mij ,

(⇤)
=

N�1X

k=0

N�1�kX

l=0

zkMl,l+k +
N�1X

k=1

N�1�kX

l=0

z
⇤

k
Ml+k,l ,

(⇤⇤)
= z0

 
N�1X

l=0

Ml,l

!
+ 2Re

(
N�1X

k=1

z
⇤

k

 
N�1�kX

l=0

Ml+k,l

!)
,

with (⇤) a change of variable k  j � i and (⇤⇤) using that Ml,l+k = M⇤

l+k,l
.

Then, by writing

T0

N
(z, q) =

0

BBB@

0

TN (q)
...
0

0 · · · 0 q0

1

CCCA
+

0

BBB@

z0

0
...

zN�1

z
⇤

0 · · · z
⇤

N�1 0

1

CCCA

we obtain as well for M 2 TN+1:

hT0

N
(z, q) , Mi

M
= 2Re

(
N�1X

k=0

z
⇤

k
MN+1,k

)

+ q0

 
NX

l=0

Ml,l

!
+ 2Re

(
N�1X

k=1

q
⇤

k

 
N�1�kX

l=0

Ml+k,l

!)
.

Consequently, the adjoint of the operator

TM+1 : (Xl , h· , ·iXl
)! (TM+1 , h· , ·iM) ,

with the inner product h· , ·i
Xl

defined in (35), when applied to a matrixM(2)
2 TM+1,

yields the vector
z2 = T⇤

M+1M
(2)
2 R⇥ CM

,

whose components are:

z2[k] =
M�kX

l=0

M(2)
l+k,l

, 8k = 0, . . . ,M .

Similarly, the adjoint of the operator

T0

HS
: (Xt ⇥Qt , h· , ·iXt

+ h· , ·i
Qt

)! (THS+1 , h· , ·iM) ,

with the inner products h· , ·i
Xt

and h· , ·i
Qt

defined in (36)-(37), when applied to

M(2)
2 THS+1, yields the pair of vectors

(z1, q1) = T
0
⇤

HS
M(1)

2 CHS ⇥ (R⇥ CHS�1) ,



40 K. POLISANO, L. CONDAT, M. CLAUSEL AND V. PERRIER

whose components are:

z1[k] = M(1)
HS+1,k, q1[k] =

HS�1�kX

l=0

M(1)
l+k,l

+ �kM
(1)
HS ,HS

, 8k = 0, . . . , HS � 1 .

Appendix F. Proof of Proposition 9.

First, let us determine the operator norm kTM+1k
2 = sup

z2Xl

kTM+1(z)k
2
F

kzk2
Xl

.

By definition, we have kzk2
Xl

= z
2
0 + 2 |z1|

2 + · · ·+ 2 |zM |
2. Moreover, we get:

kTM+1(z)k
2
F = (M+1)z20+2M |z1|

2+2(M�1) |z2|
2+ · · ·+2 |zM |

2 6 (M+1) kzk2
Xl

,

with equality when z = (1, 0, . . . , 0), hence

(93) kTM+1k
2 = M + 1 .

Let us now decompose the operator T0

HS
as follows:

T0

HS
(z, q) =

0

BBB@

0

THS
(q)

...
0

0 · · · 0 q0

1

CCCA

| {z }
T2(q)

.
+

0

BBB@

z0

0
...

zHS�1

z
⇤

0 · · · z
⇤

HS�1 0

1

CCCA

| {z }
T1(z)

We directly have kT1(z)k
2
F = kzk2

Xt
, that is kT1k = 1. Besides, we have

kT2(q)k
2
F = (HS + 1)q20 + 2(HS � 1) |q1|

2 + · · ·+ 2 |qHS�1|
2 6 (HS + 1) kqk2

Qt
,

with equality when q = (1, 0, . . . , 0), hence kT2k
2 = HS + 1.

Now, we have

��T0

HS
(z, q)

��2
F

k(z, q)k2
Xt⇥Qt

=
kT1(z)k

2
F + kT2(q)k

2
F

kzk2
Xt

+ kqk2
Qt

,

6
kT1k

2
kzk2

Xt
+ kT2k

2
kqk2

Qt

kzk2
Xt

+ kqk2
Qt

,

6 ↵ kT1k
2 + (1� ↵) kT2k

2
,

6 max(kT1k
2
, kT2k

2) = kT2k
2
,

with ↵ =
kqk2

Qt

kzk2
Xt

+kqk2
Qt

and is achieved when z = 0 and q = (1, 0, . . . , 0), hence

��T0

HS

��2 = HS + 1 .
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We are now able to derive the operator norms (48):

���L(1)(X)
���
2

(1)
=

MX

m=1

���L(1)
m

(X)
���
2

F
,

6
��T0

HS

��2
MX

m=1

⇣
kbx[m, :]k2

Xt
+ kq[m, :]k2

Qt

⌘
,

6
��T0

HS

��2 kXk2
H

,

with equality when bx = 0, q[0, :] = 0 and q[m, :] = (1, 0, . . . , 0) for all m 2 J1,MK.

Similarly, we have

���L(2)(X)
���
2

(2)
=

HS�1X

n2=0

���L(2)
n2

(X)
���
2

F
,

6 kTM+1k
2
HS�1X

n2=0

kbx[:, n2]k
2
Xl

,

6 kTM+1k
2
kXk2

H
,

with equality when q = 0 and bx[:, n2] = (1, 0, . . . , 0) for all n2 2 J0, HS � 1K.

We conclude that
���L(1)

���
2

(1)
=
��T0

HS

��2 = HS + 1 ,

���L(2)
���
2

(2)
= kTM+1k

2 = M + 1 .

Finally,

kL(X)k2(1,2) =
���L(1)(X)

���
2

(1)
+
���L(2)(X)

���
2

(2)
,

6
✓���L(1)

���
2

(1)
+
���L(2)

���
2

(2)

◆
kXk2

H
.

Appendix G. Proof of Proposition 7. Let F1 and F2 be the mappings:

F1 : bx 2 X 7!
1

2
kAbx� bykY2

2 R ,

F2 : X = (bx,q) 2 H 7! bx 2 X .

Then, F : H 7! R writes F = F1 � F2 and its di↵erential at X0 is:

(dF )X0(X) = (dF1)F2(X0) � (dF2)X0(X) .

First, we have

F1(bx+ h) =
1

2
kA(bx+ h)� byk2

Y
,

=
1

2
kAbx� byk2

Y
+

1

2
hAbx� by,AhiY +

1

2
hAh,Abx� byiY +

1

2
kAhk2

Y
,

= F1(bx) + hAbx� by,AhiY + o(khkX ) ,

= F1(bx) + hA⇤(Abx� by),hiX + o(khkX ) ,
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that is

(dF1)bx(h) = hA
⇤(Abx� by),hiX .

Moreover, F2 is linear so (dF2)X0(X) = F2(X), hence

(dF )X0(X) = hA⇤(Abx0 � by), bxiX =

⌧✓
A⇤(Abx0 � by)

0

◆
,X

�

H

,

that is

rF (X0) =

✓
A⇤(Abx0 � by)

0

◆
.

Consequently,

krF (X)�rF (X0)kH 6 kA⇤A(bx� bx0)kX 6 kA⇤Akkbx� bx0
kX .

We get � = kA⇤Ak = kAk2 and Lemma 5 concludes the proof.

Appendix H. Proof of Proposition 10. Let us compute the di↵erential
function of F :

F (X1 + h1,X2 + h2)

=
1

2
hA1bx1 +A2bx2 +A1h1 +A2h2 � y,A1bx1 +A2bx2 +A1h1 +A2h2 � yiM ,

= F (X1,X2) +
1

2
hA1h1,A1bx1 +A2bx2 � yiM +

1

2
hA1h1,A2h2iM +

1

2
hA1h1,A1h1iM

+
1

2
hA2h2,A1bx1 +A2bx2 � yiM +

1

2
hA2h2,A1h1iM +

1

2
hA2h2,A2h2iM ,

with

|hA1h1,A2h2iM| 6 kA1kkA2kkh1kH1kh2kH2 = o (k(h1,h2)kH) ,

so we deduce that

rF (X1,X2) =
1

2

✓
A1

⇤(A1bx1 +A2bx2 � y)
A2

⇤(A1bx1 +A2bx2 � y)

◆
.

The adjoint operators are Ã⇤z = ( bG⇤

2z)⇤ h̄
0, (F�1

1 )⇤ = 1
W
F1 and (F�1

2 )⇤ = 1
H
F2 and

S⇤

1(v�M , . . . , v0, . . . , vM ) = (v0, . . . , vM ) and S⇤

2(v�P , . . . , v0, . . . , vP ) = (v0, . . . , vP ).
Let us determine the Lipschitz constant of the gradient rF :

krF (X1,X2)�rF (X0

1,X
0

2)k
2
X

=
1

4
kA1

⇤(A1(bx1 � bx0

1) +A2(bx2 � bx0

2))k
2
X1

+
1

4
kA2

⇤(A1(bx1 � bx0

1) +A2(bx2 � bx0

2))k
2
X2

.

We are looking for a majoration of each term. We deal with the first one C1, the
second C2 being obtained in the same way. Using the inequality (a+ b)2 6 2a2 +2b2:

C1 6 1

4
(kA1

⇤A1kkbx1 � bx0

1kX1 + kA1
⇤A2kkbx2 � bx0

2kX2)
2
,

6 1

2
kA1

⇤A1k
2
kbx1 � bx0

1k
2
X1

+
1

2
kA1

⇤A2k
2
kbx2 � bx0

2k
2
X2

.
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We have kAk = kA⇤
k = 1, kSibx1kF = kbxikX , for i 2 {1, 2}; that is, kSik = 1 and

kF
�1
i

vk22 = 1
N2 kvk22; that is, kF

�1
i
k = 1

N
. Hence, kA1k 6 1

W
, kA1

⇤
k 6 1, kA2k 6 1

H

and kA2k 6 1. Consequently, we get

C1 6 1

2W 2
kbx1 � bx0

1k
2
X1

+
1

2H2
kbx2 � bx0

2k
2
X2

and exactly the same majoration for C2. Thus, we have

krF (X1,X2)�rF (X0

1,X
0

2)k
2
X

6 �
2(kX1 �X0

1k
2
H1

+ kX2 �X0

2k
2
H2

) ,

with

� =
1

min(W,H)
.
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par la transformée en ondelettes monogènes et super-résolution de lignes 2-D, PhD thesis,
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