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Abstract

In this work we give a sense to the notion of orientation for self-similar Gaussian fields with
stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis
functions. We propose a structure tensor formulation and provide an intrinsic definition of the
orientation vector as eigenvector of this tensor. That is, we show that the orientation vector
does not depend on the analysis function, but only on the anisotropy encoded in the spectral
density of the field. Then, we generalize this definition to a larger class of random fields called
localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields.
Two classes of Gaussian models with prescribed orientation are studied in the light of these new
analysis tools.

Keywords: Fractional fields, H-sssi fields, anisotropy function, Riesz analysis, structure tensor,
orientation vector, localizable fields, tangent fields.

1. Introduction

Anisotropic images, admitting different characteristics along a considered direction, are ubiq-
uitous in many areas as computer vision [1], image processing [2], and hydrology [3]. A major
issue is then the definition of a suitable concept of local anisotropy.

A widely used approach, in the image processing community, consists in defining directionality
properties of an image by means of its Riesz transform [4]. Several characteristics can then be
derived from the knowledge of the Riesz transform of an image: its local orientation, which is
roughly speaking the dominant direction at a given point and the structure tensor [5] whose rank
is related to the local dimensionality of the image. This approach has proved to be successful for
many applications such as classification or texture retrieval [6]. Recently, this framework has been
extended to the case of superimposed patterns. An extension of the synchrosqueezing method to
the bidimensionnal setting, based on wavelet analysis, has been proposed in [7].

In many cases, the analyzed anisotropic image is related to some physical phenomena, that
can be well modeled using a stochastic approach. Anisotropic random fields are then naturally
involved in the modeling of medical images [2] or in spatial statistics [8]. In such situations, the
Riesz framework is not so easy to apply. The main difficulty lies in giving a rigourous definition of
the Riesz transform of a random field. Indeed [9], the Riesz transform of a function is well defined if
it belongs to Lp for some p > 1, which is not the case for the sample paths of many classical random
fields, like Fractional Fields widely used to model random textures. The nonlocal character of the
Riesz transform then prevents any definition based on a restriction of the considered random field
to a compact set.
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To overcome all these difficulties, we choose to use a Riesz-based approach, adapting the work
of [5, 10] about Riesz-analysis of anisotropic images characteristics. In [10], the authors defined
a structure tensor and an orientation of the neighborhood of an image, derived from the Riesz
framework. Numerical experiments have put in evidence the effectiveness of the approach and
especially the fact that one clearly recovers the anisotropic features of the image. From the
theoretical point of view, the orientation and the structure tensor depend on the chosen analysis
function. We show that, surprisingly, considering the very general case of localizable Gaussian
fields, the anisotropic characteristics of a random field become intrinsic: neither the structure
tensor nor the orientation vector depend on the analysis function, but only on the anisotropy
encoded in the density function of its tangent fields.

Our paper is organized as follows. In Section 2, we first recall some basic facts about the
Riesz transform and its use for defining anisotropic features of an image. Then in Section 3, we
define the Riesz-based notion of the orientation and the structure tensor in the Gaussian self-
similar with stationary increments case. We prove in Theorem 1 that these two characteristics are
intrinsic in the sense that they depend only on the anisotropic properties of the analyzed random
field. Section 4 is then devoted to the extension of all these notions to the localizable case. We
then provide two classes of Gaussian models with prescribed orientation. For sake of clarity, we
postponed all proofs in Section 5.

2. Classical tools in directionality analysis of images

In this section, we give some background about two classical tools for analyzing the anisotropy
properties of an oriented texture: the local orientation and the structure tensor. We first recall in
Section 2.1 the usual definitions based on the Riesz transform introduced in [4].

2.1. Local orientation of an image and structure tensor

The classical notion of local orientation of a texture is based on the Riesz transform. The Riesz
transform Rf of any f ∈ L2(R2) is defined in the Fourier domain1 as

Rf =

(
R1f
R2f

)
with R̂1f(ξ) = −j

ξ1
∥ξ∥

f̂(ξ), R̂2f(ξ) = −j
ξ2
∥ξ∥

f̂(ξ) , ∀ξ = (ξ1, ξ2) ∈ R
2 .

The main properties of R [9, 11] are summarized in the two following propositions. The first
ones concern the invariance with respect to dilations, translations, and the steerability property
(relation with the rotations).

Proposition 1. The Riesz transform commutes both with the translation, and the dilation oper-
ator, that is for any f ∈ L2(R2), a > 0 and b ∈ R2, one has

RDaf = DaRf with Daf = f(a−1·) ,

and
RTbf = TbRf with Tbf = f(·− b) .

Proposition 2. The Riesz transform is steerable, that is, for any f ∈ L2(R2) one has

Rθ(Rf) = R−1
θ R(Rθf) =

(
cos θR1(Rθf) + sin θR2(Rθf)
− sin θR1(Rθf) + cos θR2(Rθf)

)
,

1where the 2D Fourier transform is defined for f ∈ L1(R2) by f̂(ξ) =
∫
R2 f(x)e−j⟨x, ξ⟩ dx and then extended

by the Plancherel theorem and by continuity arguments for f ∈ L2(R2).
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where Rθf = f(R−θ ·) is the rotation operator by the angle θ, and

R−θ =

(
cos θ sin θ
− sin θ cos θ

)
.

is the matrix of the spatial rotation of angle −θ.

The Riesz transform is also a unitary and componentwise antisymmetric operator on L2(R2).

Proposition 3. For any i ∈ {1, 2}, the i–th component of the Riesz transform Ri is an antisym-
metric operator, namely for all f, g ∈ L2(R2) we have

⟨Rif, g⟩L2(R2) = −⟨f, Rig⟩L2(R2) .

and R1
2 +R2

2 = −I, which imply in particular that

⟨Rf, Rg⟩L2(R2) = ⟨R1f, R1g⟩L2(R2) + ⟨R2f, R2g⟩L2(R2) = ⟨f, g⟩L2(R2) .

Using the Riesz transform one can also define the so-called orientation of an image [4, 12].

Definition 1 (Local orientation of a deterministic function). Let f ∈ L2(R2,R∗
+).

Assume that a.e. Rf ̸= 0. One then defines

∀a.e. x ∈ R
2, n⃗(x) =

Rf(x)∥∥Rf(x)
∥∥ ,

the local orientation of f at point x.

The Riesz transform can be viewed as a smooth version of the gradient operator. To characterize
the degree of directionality of f at some point x, a classical tool, widely used in the image
processing community, is the so-called structure tensor involving the gradient [5, 13, 14], which
has been revisited through the Riesz transform by [10]. Let us begin with the 2× 2 matrix:

Jf (x) = Rf(x)Rf(x)T =

(
R1f(x)2 R1f(x)R2f(x)

R2f(x)R1f(x) R2f(x)2

)
. (1)

This matrix is symmetric, positive definite, of rank one and then admits 0 as eigenvalue and also
1 with the associated eigenvector Rf(x), that is the local orientation, since

Jf (x)Rf(x) = (Rf(x)Rf(x)T)Rf(x) = Rf(x)(Rf(x)TRf(x)) = Rf(x) .

In practice, we define the local orientation vector on a point x ∈ R2 as the vector minimizing
the distance to the set of the Riesz vectors Rf(x′) on a neighborhood of x ∈ R2, defined by
a positive window W (x − x′), that is we are looking for the vector n maximizing the quantity∫
W (x− x′)(Rf(x′)Tn⃗)2 dx′ or equivalently n⃗TJW

f (x)n⃗, with

JW
f (x) = (W ∗ Jf )(x) , (2)

which is the matrix Jf (x) filtered by the positive windows function W to form the structure tensor
[5, 13, 14]. This matrix is symmetric and positive definite, then admits two nonnegative eigenvalues
λ1(x) and λ2(x). It is easy to see that the local orientation n⃗(x) maximizing n⃗TJW

f (x)n⃗ is always

an eigenvector of the matrix JW
f (x) associated to its largest eigenvalue λ1(x).

The following coherency index provides a degree of directionality at any point [5]:

χf (x) =
λ1(x)− λ2(x)

λ1(x) + λ2(x)
∈ [0, 1] .

The case χf (x) ≈ 1 corresponds to an almost one dimensional image at x, whereas the case
χf (x) = 0 may correspond to different situations, such as isotropy or existence of a corner. Note
that, all these quantities depend on the chosen windows W .

The aim of next sections is to adapt this framework to the case of random Gaussian fields.
We first shall consider the case of self-similar Gaussian fields admitting stationary increments in
Section 3, and in Section 4 to the more general classe of localizable Gaussian fields.
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3. Riesz-based orientation of self-similar Gaussian fields with stationary increments

We observe first that all the definitions of the previous section cannot be extended directly to
the case of random fields. Indeed, there is a difficulty to circumvent, which is the definition of
the Riesz transform of a Gaussian random field, like a Brownian motion for example. The usual
definition of the Riesz transform holds for Lp functions. Unfortunately, the sample paths of many
classical random Gaussian fields do not belong to these spaces. Defining the Riesz transform
of a Gaussian field by duality (as it is often done for the transforms of distributions) is not
straightforward, because the Schwartz class is not stable by the Riesz transform. Although some
work on the Hilbert transform of temperate distributions [15, 16] can potentially be extended
to a generalized Riesz transform adapted to random fields, we favor here to define a notion of
orientation for Gaussian fields, which is easily interpretable (intuitively related to the spectral
density of the field) and easy to manipulate from a computational point of view (which can be
explicitly computed for usual random fields and estimated by the use of wavelets or filter bank).

In this section, we first begin with the simple case of self-similar Gaussian fields. We give
in Section 3.1 some background on such fields. Then in Section 3.2, we define our notion of
orientation, based on a Riesz analysis of these fields with an appropriated analysis function. Finally
in Section 3.3, we give several examples of oriented self-similar Gaussian fields with stationary
increments. From now on, we restrict ourselves to bidimensionnal centered real valued Gaussian
fields, since our goal is to analyse anisotropic images. We shall also assume that the Gaussian
field X under consideration is stochastically continuous; that is, the covariance

(x,y) +→ E[X(x)X(y)] ,

is a continuous function on (R2)2.

3.1. Self-similar Gaussian fields with stationary increments

In what follows we shall focus on the special case of H–self-similar Gaussian fields admit-
ting stationary increments (H-sssi), studied in [17, 18, 19]. Remember that the bidimensionnal
Gaussian field X is said to admit stationary increments if for any x ∈ R2,

{X(x+ h)−X(x)}h∈R2
(fdd)
= {X(h)}h∈R2 ,

whereas X is said to be H–self-similar (see [17]), for some H ∈ (0, 1) if

∀c > 0, {X(cx)}x∈R2
(fdd)
= {cHX(x)}x∈R2 ,

where as usual
(fdd)
= means equality of finite dimensional distributions. Since X is assumed to be

stochastically continuous, the self-similarity implies in particular that X(0) = 0 a.s.
We now recall, following [20], the notion of spectral measure of a Gaussian field admitting

stationary increments, based on the following classical result.

Proposition 4. Let X = {X(x)}x∈R2 be a centered real-valued Gaussian field with stationary
increments. Then, there exists a unique Borel measure σX satisfying

∫

R2

min(1, ∥ξ∥2) dσX(ξ) < ∞ ,

such that for any x,y ∈ R2, the covariance reads:

E(X(x)X(y)) =

∫

R2

(e j⟨x, ξ⟩ − 1)(e−j⟨y, ξ⟩ − 1) dσX(ξ) .

The measure σX is called the spectral measure of the Gaussian field with stationary increments X.
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In what follows we shall consider only Gaussian fields whose spectral measure σX admits a density
fX , called the spectral density of X , with respect to the Lebesgue measure: dσX(ξ) = fX(ξ) dξ.
Since X is real-valued this function is necessarily even. Such field admits an harmonizable repre-
sentation:

X(x) =

∫

R2

(
e j⟨x, ξ⟩ − 1

)
f1/2
X (ξ)Ŵ(dξ) , (3)

where Ŵ is a complex-valued white noise. By uniqueness of the spectral density, the representation
of H–self-similar Gaussian fields follows (see also [17, 18, 19, 21]):

Proposition 5 (Dobrushin [17]). Let H ∈ (0, 1) and X be a H–self-similar Gaussian field with
stationary increments admitting a spectral density fX. Then fX is of the form

fX(ξ) = ∥ξ∥−2H−2 CX

(
ξ

∥ξ∥

)
,

where CX is a positive homogeneous function defined on the sphere S
1 = {ξ ∈ R2, ∥ξ∥ = 1}. The

function CX is called the anisotropy function of X.

Remark 1. The estimation problem of the anisotropy function has been addressed by Istas in [22].

We now investigate the orientation properties of a self-similar Gaussian field deformed by a linear
transform.

Proposition 6. Let X be a H–self-similar Gaussian field with stationary increments admitting
as spectral density fX and as anisotropy function CX . Let L be an invertible 2 × 2 real valued
matrix. Define XL by XL(x) = X(L−1x). Then XL is a H–self-similar Gaussian field admitting
as

• spectral density
fXL

(ξ) =
∣∣det(L)

∣∣ fX(LTξ) , ξ ∈ R
2 ,

• anisotropy function

CXL
(Θ) =

∣∣det(L)
∣∣

∥∥LTΘ
∥∥2H+2CX

(
LT Θ∥∥LT Θ

∥∥

)
, Θ ∈ S

1.

Proof. The self-similarity and stationarity properties of XL directly come from that of X and of
the linearity of L. To compute the spectral density of XL, observe that:

E(XL(x), XL(y)) = Cov(X(L−1x), X(L−1y)) ,

=

∫

R2

(
e j⟨L−1x, ξ⟩ − 1

)(
e−j⟨L−1y, ξ⟩ − 1

)
fX(ξ) dξ ,

=

∫

R2

(
e j⟨x, (L−1)Tξ⟩ − 1

)(
e−j⟨y, (L−1)Tξ⟩ − 1

)
fX(ξ) dξ ,

=

∫

R2

(
e j⟨x, ζ⟩ − 1

)(
e−j⟨y, ζ⟩ − 1

)
fX(LTζ) |detL| dζ ,

using the change of variable ζ = (L−1)Tξ, which directly leads by identification to the explicit
expression of fXL

, as well as that of CXL
given in Proposition 6. !

We now explain how to define in a proper way the directional characteristics of a Gaussian field X
admitting stationary increments in the self-similar case, and the relation to its anisotropy function
CX .
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3.2. Definition of a Riesz-based orientation in the self-similar case

Our notion of Riesz-based orientation of a self-similar Gaussian field will be based on the
following preliminary result, leading to a new formulation for the structure tensor.

Theorem 1. Let X be a H–self-similar Gaussian field admitting a spectral density fX whose
anisotropy function CX is bounded and ψ a real isotropic wavelet with 2 zero moments and fast
decay, defined by its 2-D Fourier transform ψ̂(ξ) = ϕ(∥ξ∥). By analogy with the structure tensor
(1)-(2) evaluated at the origin, let us define the matrix:

JψX =

(
| ⟨X, R1ψ⟩ |2 ⟨X, R1ψ⟩ ⟨X, R2ψ⟩

⟨X, R1ψ⟩ ⟨X, R2ψ⟩ | ⟨X, R2ψ⟩ |2

)
,

with the Gaussian variables ⟨X, Rℓψ⟩ =
∫
R2 X(x)Rℓψ(x) dx.

Then, the covariance matrix of the Gaussian vector (⟨X, R1ψ⟩ , ⟨X, R2ψ⟩)T is

E

[
JψX

]
=

(∫ +∞

0

|ϕ(r)|2

r2H+1
dr

)
JX ,

where for any ℓ1, ℓ2 ∈ ({1, 2})2,

[JX ]ℓ1,ℓ2 =

∫

Θ∈S1

Θℓ1Θℓ2 CX(Θ) dΘ , (4)

with the notation Θ = (Θ1,Θ2).
JX is a nonnegative definite 2× 2 matrix depending only on the anisotropy function CX , and will
be called the structure tensor of X.

Proof. The assumptions on ψ insure that the function gℓ defined by gℓ(ξ) = R̂ℓψ(ξ)f
1/2
X (ξ) is

square-integrable; that is, the stochastic integral
∫
R2 gℓ(ξ)Ŵ(dξ) is well defined and the following

operations lead to the a.s. existence of the Gaussian variables ⟨X, Rℓψ⟩, for ℓ = 1, 2:
∫

R2

R̂ℓψ(ξ)f
1/2
X (ξ)Ŵ(dξ) =

∫

R2

(
R̂ℓψ(ξ)− R̂ℓψ(0)

)
f1/2
X (ξ)Ŵ(dξ) ,

=

∫

R2

(∫

R2

e j⟨x, ξ⟩Rℓψ(x) dx−

∫

R2

Rℓψ(x) dx

)
f1/2
X (ξ)Ŵ(dξ) ,

=

∫

R2

(∫

R2

(
e j⟨x, ξ⟩ − 1

)
f1/2
X (ξ)Ŵ(dξ)

)
Rℓψ(x) dx ,

= ⟨X, Rℓψ⟩ .

The first equality follows since R̂ℓψ(0) = 0 by the moment assumption on ψ and the third equality
comes from the classical stochastic Fubini Theorem (see [23]), which holds since

∫

R2

(∫

R2

|e j⟨x, ξ⟩ − 1|2fX(ξ)|ψ(x)|2 dξ

)1/2

dx

=

∫

R2

(∫

R2

|e j⟨x, ξ⟩ − 1|2fX(ξ) dξ

)1/2

|ψ(x)| dx < ∞ ,

by the integrability properties of ψ and the existence of the stochastic integral defining X .
The covariance matrix is then easily computed: by definition of the Riesz transform, one has

for any ℓ1, ℓ2 ∈ ({1, 2})2,

E[⟨X, Rℓ1ψ⟩ ⟨X, Rℓ2ψ⟩] =

∫

R2

ξℓ1ξℓ2
∥ξ∥2

∣∣∣ψ̂(ξ)
∣∣∣
2
fX(ξ) dξ .
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We set ξ = rΘ with (r,Θ) ∈ R+×S1. Hence, remembering that ψ is isotropic, that is ψ̂(ξ) = ϕ(r)
and using the expression of fX given in Proposition 5, we obtain

E[⟨X, Rℓ1ψ⟩ ⟨X, Rℓ2ψ⟩] =

∫

Θ∈S1

∫ +∞

r=0

1

r2H+2
Θℓ1Θℓ2

∣∣ϕ(r)
∣∣2 CX(Θ) r dr dΘ ,

=

[∫ +∞

r=0

|ϕ(r)|2

r2H+1
dr

] [∫

Θ∈S1

Θℓ1Θℓ2 CX(Θ) dΘ

]
.

Theorem 1 then follows. !

We now define the structure tensor of X , its orientation and its coherency index.

Definition 2 (Orientation and coherency). The matrix JX defined in Theorem 1 (4) is called
the structure tensor of X. Let λ1,λ2 be its two eigenvalues. The coherency index of X is defined
as

χ(X) =
|λ2 − λ1|

λ1 + λ2
.

An orientation n⃗ is any unit eigenvector associated to the largest eigenvalue of JX .

3.3. Examples

We present below several examples of self-similar Gaussian fields, and every time we make
explicit their structure tensor and their intrinsic orientation.

3.3.1. Example 1: Fractional Brownian Field (FBF)

We begin with the Fractional Brownian Field (FBF) defined in [24]. This random field is the
isotropic multidimensional extension of the famous Fractional Brownian Motion defined by [25].
Its harmonizable representation is:

X(x) =

∫

R2

1

∥ξ∥H+1
(e j⟨x, ξ⟩ − 1)

Ŵ(dξ)

2π
.

We can easily check (CX ≡ 1
2π ), setting Θ = (cos θ, sin θ) ∈ S

1, that

[JX ]1,1 =
1

2π

∫ 2π

0
cos2 θ dθ =

1

2
, [JX ]1,2 = [JX ]2,1 =

1

2π

∫ 2π

0
cos θ sin θ dθ = 0 ,

and

[JX ]2,2 =
1

2π

∫ 2π

0
sin2 θ dθ =

1

2
,

which directly implies

JX =

(
1
2 0
0 1

2

)
, χ(X) = 0 .

Any unit vector is thus an orientation of the FBF, which is clearly consistent with its isotropic
nature.
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3.3.2. Example 2: Elementary fields (EF)

We focus here to a special case of H-sssi fields called elementary fields (EF), whose anisotropy
function is a cone with an orientation α0 and a half-width δ > 0. It admits the following harmo-
nizable representation (α0 ∈ (−π/2,π/2), δ > 0):

Xα0,δ(x) =

∫

R2

(e j⟨x, ξ⟩ − 1)f1/2
X (ξ)Ŵ(dξ) , (5)

where

fX(ξ) = ∥ξ∥−2H−2 CX

(
ξ

∥ξ∥

)
, (6)

CX(Θ) =
1

4δ

(
1[α0−δ,α0+δ](argΘ) + 1[α0+π−δ,α0+π+δ](argΘ)

)
. (7)

Let us compute its structure tensor JX , using the definition given in Theorem 1.

Remark 2. The contribution of each of the portions of the cone is identical in the integrals defin-
ing the coefficients of JX . Thus, in the following computations we only consider one portion whose
contribution is doubled.

We start with the diagonal terms:

[JX ]1,1 =

∫

Θ∈S1

Θ2
1 CX(Θ) dΘ =

1

2δ

∫ α0+δ

α0−δ
cos2 θ dθ =

1

2
+

1

2
cos(2α0)

sin(2δ)

2δ
.

By the relation cos2 θ + sin2 θ = 1, we get as well

[JX ]2,2 =
1

2
−

1

2
cos(2α0)

sin(2δ)

2δ
.

The last terms are computed as follows:

[JX ]1,2 = [JX ]2,1 =
1

2δ

∫ α0+δ

α0−δ
cos θ sin θ dθ =

1

2
sin(2α0)

sin(2δ)

2δ
.

Hence the structure tensor of the elementary field is

JX =

(
1
2 + 1

2 cos(2α0)
sin(2δ)

2δ
1
2 sin(2α0)

sin(2δ)
2δ

1
2 sin(2α0)

sin(2δ)
2δ

1
2 − 1

2 cos(2α0)
sin(2δ)

2δ

)
.

Remark that JX diagonalizes as

JX =

(
cosα0 − sinα0

sinα0 cosα0

)(
1
2 + 1

2
sin(2δ)

2δ 0

0 1
2 − 1

2
sin(2δ)

2δ

)(
cosα0 − sinα0

sinα0 cosα0

)T

.

Denoting λ1 " λ2 the two eigenvalues of JX ,

λ1 =
1

2
+

1

2

sin(2δ)

2δ
and λ2 =

1

2
−

1

2

sin(2δ)

2δ
,

the coherency index of X is given by

χ(X) =
λ1 − λ2
λ1 + λ2

=
sin(2δ)

2δ
.

An orientation of the elementary field Xα0,δ being a unit eigenvector associated with λ1, we obtain

n⃗ =

(
cosα0

sinα0

)
.
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Remark 3. This is in accordance with what we observe when performing simulations. For δ = π/2
we recover the classical FBF which is isotropic and we get χ(X) = sin(π)/π = 0. Conversely,
notice that χ(X) tends to 1 when δ → 0, meaning that the coherency is strong when the cone of
admissible directions is tight around the angle α0. Note that in the limite case δ → 0, the density
function CX tends to the Dirac measure along the line argΘ = α0, and the structure tensor
degenerates to

JX =

(
cos2 α0 cosα0 sinα0

cosα0 sinα0 sin2 α0

)
,

which diagonalizes as

JX = Rα0

(
1 0
0 0

)
RT

α0
.

leading to the same orientation vector (cosα0, sinα0)T. Notice also that in the limit case, the
structure tensor is not invertible anymore.

3.3.3. Example 3: sum of two elementary fields

To understand how our notion of Riesz-based orientation can be adapted to the setting of
multiple oriented random fields, we consider the following toy model (α0,α1 ∈ (−π/2,π/2), δ > 0):

X = Xα0,δ +Xα1,δ .

The Gaussian field X is then the sum of two elementary fields of same regularity H and of
respective directions α0 ̸= α1 (as defined in Example 2 above). We assume that δ < |α1 − α0|/2.
This last condition implies in particular that [α0− δ,α0+ δ]∩ [α1− δ,α1+ δ] = ∅ and the spectral
densities have disjoint supports, that is Xα0,δ and Xα1,δ are supposed to be independent.

Then we have

JX =

(
1 + 1

2
sin(2δ)

2δ (cos(2α0) + cos(2α1))
1
2
sin(2δ)

2δ (sin(2α0) + sin(2α1))
1
2
sin(2δ)

2δ (sin(2α0) + sin(2α1)) 1− 1
2
sin(2δ)

2δ (cos(2α0) + cos(2α1))

)
.

As previously the matrix JX diagonalizes as

JX = R(α0+α1)/2

(
1 + sin(2δ)

2δ cos(α0 − α1) 0

0 1− sin(2δ)
2δ cos(α0 − α1)

)
RT

(α0+α1)/2
,

where we denoted

R(α0+α1)/2 =

(
cos
(
α0+α1

2

)
− sin

(
α0+α1

2

)

sin
(
α0+α1

2

)
cos
(
α0+α1

2

)
)
.

Thus, the coherency index is

χ(X) =
sin(2δ)

2δ
cos(α0 − α1) ,

which tends to cos(α0 − α1) when δ → 0. One can also observe that the closer α0 and α1 are, the
more coherent the random field is and then admits a dominant orientation. An orientation of X
is given by

n⃗ =

(
cos
(
α0+α1

2

)

sin
(
α0+α1

2

)
)

.

We then recover a dominant orientation, related to half the angle of the two orientations.
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3.3.4. Example 4: deformation of an elementary field by a linear transform

Let L be an invertible 2× 2 matrix and α0 ∈ (−π/2,π/2), δ > 0. Set

XL(x) = Xα0,δ(L
−1x) . (8)

Thanks to Proposition 6, we have an explicit expression for the spectral density of XL:

fXL
(ξ) =

|det(L)|

2δ
∥LTξ∥−2H−2

1[α0−δ,α0+δ](arg(L
Tξ)) ,

=
|det(L)|

2δ
∥LTξ∥−2H−2

1[tan(α0−δ),tan(α0+δ)]((L
Tξ)2/(L

Tξ)1) .

Since the matrix L is invertible, it admits a Singular Value Decomposition L = U∆VT where
U,V are two orthogonal matrices and ∆ a diagonal matrix with nonnegative eigenvalues. One
can then deduce the general case of an invertible matrix L from three specific ones: L ∈ O+

2 (R),
L ∈ O−

2 (R) and L diagonal with nonnegative eigenvalues. Before deriving the general form of an
orientation vector, we will consider each term of the SVD.

(i) We first consider the case where L is an orthogonal matrix of the form

L = Rθ0 =

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
,

one has

fXL
(ξ) =

1

2δ
∥ξ∥−2H−2

1[α0+θ0−δ,α0+θ0+δ](arg ξ) ,

which implies that one can choose as orientation for XL the unit vector

n⃗L =

(
cos (α0 + θ0)

sin (α0 + θ0)

)
= L

(
cosα0

sinα0

)
= (L−1)T

(
cosα0

sinα0

)
, (9)

since any orthogonal matrix equals the transpose of its inverse.

(ii) We now deal with the case where L is an orthogonal matrix of the form

L =

(
cos θ0 sin θ0
sin θ0 − cos θ0

)
=

(
cos θ0 − sin θ0
sin θ0 cos θ0

)
×

(
1 0
0 −1

)
.

One has

fXL
(ξ) =

1

2δ
∥ξ∥−2H−2

1[θ0−α0−δ,θ0−α0+δ](arg ξ) ,

which implies that one can choose as orientation for XL the unit vector

n⃗L =

(
cos (θ0 − α0)

sin (θ0 − α0)

)
= L

(
cosα0

sinα0

)
= (L−1)T

(
cosα0

sinα0

)
, (10)

since as above any orthogonal matrix equals the transpose of its inverse.

(iii) We finally deal with the case where L is a diagonal matrix L =

(
λ1 0
0 λ2

)
, with λ1,λ2 > 0.

In this case observe that the condition

tan(α0 − δ) <
(LTξ)2
(LTξ)1

< tan(α0 + δ) ,

is equivalent to λ1
λ2

tan(α0 − δ) < ξ2
ξ1

< λ1
λ2

tan(α0 + δ), that is to

δ∆ < arg ξ < δ∆ ,

10



with δ∆ = arctan(λ1
λ2

tan(α0 − δ)) and δ∆ = arctan(λ1
λ2

tan(α0 + δ)). Hence,

fXL
(ξ) =

|det(L)|

2δ
∥LTξ∥−2H−2

1[δ
∆
,δ∆](arg ξ) ,

CXL
(Θ) =

|det(L)|

2δ
∥LTΘ∥−2H−2

1[δ
∆
,δ∆](argΘ) .

Now, recalling that:

[JXL
]ℓ1,ℓ2 =

∫

Θ∈S1

Θℓ1Θℓ2 CXL
(Θ) dΘ ,

we obtain

[JXL
]1,1

|det(L)|
=

1

2δ

∫ δ∆

δ
∆

cos2 θ CXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ
∆

cos2 θ

(λ21 cos
2 θ + λ22 sin

2 θ)H+1
dθ ,

[JXL
]2,2

|det(L)|
=

1

2δ

∫ δ∆

δ
∆

sin2 θ CXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ
∆

sin2 θ

(λ21 cos
2 θ + λ22 sin

2 θ)H+1
dθ ,

[JXL
]1,2

|det(L)|
=

1

2δ

∫ δ∆

δ
∆

cos θ sin θ CXL
(cos θ, sin θ) dθ =

1

2δ

∫ δ∆

δ
∆

cos θ sin θ

(λ21 cos
2 θ + λ22 sin

2 θ)H+1
dθ .

Now, let us define (u1(θ), u2(θ)) = (cos θ, sin θ) and let us introduce the functions

fℓ1,ℓ2 : θ +→ uℓ1(θ)uℓ2(θ) (λ
2
1u1(θ)

2 + λ22u2(θ)
2)−H−1 , Fℓ1,ℓ2 : x +→

∫ x

0
fℓ1,ℓ2(θ) dθ,

ν : α +→ arctan

(
λ1
λ2

tanα

)
, Gℓ1,ℓ2 : α +→ Fℓ1,ℓ2(ν(α)) .

Each term of the structure tensor writes

[JXL
]ℓ1,ℓ2

|det(L)|
=

Gℓ1,ℓ2(α0 + δ)−Gℓ1,ℓ2(α0 − δ)

2δ
.

When the parameter δ is small, we have

Gℓ1,ℓ2(α0 + δ)−Gℓ1,ℓ2(α0 − δ)

2δ
= G′

ℓ1,ℓ2(α0) +
δ2

12
G′′′
ℓ1,ℓ2(α0) +O(δ4) ,

= ν′(α0) F
′
ℓ1,ℓ2(ν(α0)) +O(δ2) ,

= ν′(α0) fℓ1,ℓ2(ν(α0)) +O(δ2) .

Hence,

Gℓ1,ℓ2(α0 + δ)−Gℓ1,ℓ2(α0 − δ)

2δ
=

λ1λ2
λ22 cos

2 α0 + λ21 sin
2 α0

×
uℓ1(ν(α0)) uℓ2(ν(α0))

(λ21 cos
2(ν(α0)) + λ22 sin

2(ν(α0)))H+1
+O(δ2) .

Let us define CH,λ1,λ2,α0 = λ21λ
2
2(λ

2
2 cos

2 α0 + λ21 sin
2 α0)−1(λ21 cos

2(ν(α0)) + λ22 sin
2(ν(α0)))−H−1.

Then, one has for small δ,

JXL
= CH,λ1,λ2,α0

(
cos2(ν(α0)) cos(ν(α0)) sin(ν(α0))

cos(ν(α0)) sin(ν(α0)) sin2(ν(α0))

)
+O(δ2) ,

which can be written as

JXL
= CH,λ1,λ2,α0Rν(α0)

(
1 0
0 0

)
RT

ν(α0)
+O(δ2) .
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Therefore n⃗L = (cos ν(α0), sin ν(α0))T can be viewed as an approximate eigenvector of JXL
asso-

ciated to its largest eigenvalue, and then an orientation of XL. Finally, we remark that

ν(α0) = arctan

(
λ1 sinα0

λ2 cosα0

)
= arg

[(
λ2 cosα0

λ1 sinα0

)]
= arg

[(
λ2 0
0 λ1

)
×

(
cosα0

sinα0

)]
.

Consequently, an approximate (up to δ2) orientation of XL is in this case

n⃗L =

(
λ2 0
0 λ1

)
n⃗

∥∥∥∥∥

(
λ2 0
0 λ1

)
n⃗

∥∥∥∥∥

with n⃗ =

(
cosα0

sinα0

)
.

Observe that

(
λ2 0
0 λ1

)
is the adjugate matrix of L. Then, dividing the numerator and denomi-

nator of the last equation by det(L) = λ1λ2, we get

n⃗L =
L−1n⃗

∥L−1n⃗∥
=

(L−1)Tn⃗

∥(L−1)Tn⃗∥
, (11)

since the diagonal matrix L−1 equals its transpose.
We now gather (9), (10) and (11): using the existence of the SVD for every matrix, we deduce

the following proposition.

Proposition 7. Let L be an invertible 2×2 matrix and XL the Gaussian field defined by (8). Set
n⃗ =

(
cosα0

sinα0

)
the orientation vector of X. Then the unit vector

n⃗L =
(L−1)Tn⃗

∥(L−1)Tn⃗∥
,

is an approximate (up to δ2) orientation vector of XL.

Proof. Let L = U∆VT be the SVD singular decomposition of L, with U,V ∈ O2(R) and ∆
diagonal with nonnegative eigenvalues.
XL(x) = X(V−T∆−1U−1x) be the Gaussian field defined by (8). Let decompose the three
operations as follows :

XL = X ◦ (VT)−1

︸ ︷︷ ︸
X1

◦∆−1

︸ ︷︷ ︸
X2

◦U−1 .

Then, since VT is an orthogonal matrix, we have from (i) and (ii) that the unit orientation vector
of X1 is

n⃗1 = ((VT)−1)Tn⃗ .

Now from (iii), the unit orientation vector (up to δ2) of X2 = X1 ◦∆−1 is

n⃗2 =
(∆−1)Tn⃗1

∥(∆−1)Tn⃗1∥
=

(∆−1)T((VT)−1)Tn⃗

∥(∆−1)T((VT)−1)Tn⃗∥
.

Finally, from (i) and (ii) again, the unit orientation vector (up to δ2) of XL = X2 ◦U−1 is

n⃗L =
(U−1)Tn⃗2

∥(U−1)Tn⃗2∥
,

=
(U−1)T(∆−1)T((VT)−1)Tn⃗

∥(U−1)T(∆−1)T((VT)−1)Tn⃗∥
,

=
((VT)−1∆−1U−1)Tn⃗

∥((VT)−1∆−1U−1)Tn⃗∥
=

(U∆VT)Tn⃗

∥(U∆VT)Tn⃗∥
=

(L−1)Tn⃗

∥(L−1)Tn⃗∥
.

!
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4. Riesz-based orientation of localizable Gaussian fields

We now extend the notion of intrinsic orientation, defined for self-similar random fields, to
a much more general setting, that of localizable Gaussian fields. This will be the purpose of
Section 4.2. In Section 4.3, we will apply it to two classes of model with prescribed orientation.
First of all, let us recall in Section 4.1 the definition of localizable Gaussian fields.

4.1. Localizable Gaussian fields

We first recall, following [18, 26, 27], the definition of H(x0)–localizable Gaussian fields.

Definition 3 (Localizable Gaussian field). We say that the random field Y = {Y (x), x ∈
R2} is H(x0)–localizable, at x0 ∈ R2 with H(x0) ∈ (0, 1) and with tangent field (or local form)
the non-trivial random field Yx0

= {Yx0
(h), h ∈ R2} if

{
Y (x0 + ρh)− Y (x0)

ρH

}

h∈R2

d
−→

{
Yx0

(h)
}
h∈R2 , (12)

as ρ→ 0, where
d
→ means convergence in distribution, that is the weak convergence for stochastic

processes (see [28]).
A random field Y = {Y (x), x ∈ R2} is said to be localizable if for all x ∈ R2 it is H(x)–localizable
for some H(x) ∈ (0, 1).

In Theorem 3.9 and Corollary 3.10 of [26], Falconer proved the following result that we state in
the Gaussian case. It enables to describe the whole class of possible tangent fields of a Gaussian
field with continuous sample paths.

Theorem 2. Let X be a localizable Gaussian field with continuous sample paths. For almost all
x0 in R2 the tangent field Yx0

of X at x0 has stationary increments and is self-similar, that is
for some H(x0) ∈ (0, 1) and for all ρ " 0,

{Yx0
(ρx), x ∈ R

2}
(fdd)
= {ρH(x0)Yx0

(x), x ∈ R
2} . (13)

In short, a Gaussian field with continuous sample paths will have at a.e. point, a “fractal” tangent
field behaving like a FBF.
We now illustrate this notion considering a classical example of Gaussian field with prescribed
tangent field: the Multifractional Brownian Field defined in the unidimensional setting in [29],
and in the multivariate case in [18, 30]. Such field is localizable at each point, with a fractional
Brownian Field for tangent field.

Example 1 (Multifractional Brownian Field). Let h : R2 → (0, 1) be a continuously differ-
entiable function whose range is supposed to be a compact interval [α,β] ⊂ (0, 1). The Multifrac-
tional Brownian Field (MBF) with multifractional function h, is the Gaussian field defined by its
harmonisable representation as follows

Xh(x) =

∫

R2

e j⟨x, ξ⟩ − 1

∥ξ∥h(x)+1
Ŵ(dξ) . (14)

4.2. Tensor structure and orientation of localizable Gaussian fields

The results of Section 3 together with Theorem 2 of section 4.1, will allow us to define the
Riesz-based orientation of any localizable Gaussian field X almost everywhere.

Definition 4 (Localizable field orientations). Let X be a Gaussian field with continuous sam-
ple paths. Assume that X is localizable at the point x0, with tangent field Yx0

, and that Yx0
is a

self-similar Gaussian field with stationary increments. One then defines:

13



• The local anisotropy function Cx0
at x0 of the localizable Gaussian field X is the anisotropy

function of its tangent field Yx0
.

• The local structure tensor Jx0
at x0 of the localizable Gaussian field X is the structure tensor

of its tangent field Yx0
.

• A local orientation at x0 of the localizable Gaussian field X is any orientation of its tangent
field Yx0

.

In view of these definitions and of Theorem 2, we deduce that any localizable Gaussian field X
admits a local orientation at almost every point x0 ∈ R2.

Example 2 (Local structure tensor and orientation of a MBF). The Multifractional Brow-
nian Field Xh (14) admits at each point a structure tensor proportional to the identity matrix. In
particular, any unit vector is an orientation of Xh. Indeed, the tangent field Yx0

of the MBF at
point x0 is a FBF of Hurst index h(x0), whose structure tensor has been determined in example
3.3.1.

4.3. Two new models of localizable Gaussian fields with prescribed orientation

In this section, we will extend our previous works [31, 32] and define two classes of Gaussian
fields with prescribed orientation. The details about numerical aspects and synthesis of the model,
as well as comparison between them, will be detailed in the companion paper [33]. These two
models will be derived from two general classes: Generalized Anisotropic Fractional Brownian
Fields (GAFBF) and Warped Anisotropic Fractional Brownian Fields (WAFBF) that we describe
in Sections 4.3.1 and 4.3.2 respectively.

4.3.1. First model: Generalized Anisotropic Fractional Brownian Fields (GAFBF)

We introduce below the definition of Generalized Anisotropic Fractional Brownian Fields
(GAFBF) which generalizes the notion of Locally Anisotropic Brownian Fields (LAFBF) intro-
duced in [31], and whose simulation will be studied in [33].

Our Gaussian field will be defined from two functions h from R2 to [0, 1] and C from R2 ×R2

to R+ satisfying the following set of assumptions:

Assumptions (H)

• h is a β–Hölder function, such that a = inf
x∈R2

h(x) > 0, b = sup
x∈R2

h(x) < 1 and b < β # 1.

• (x, ξ) +→ C(x, ξ) is bounded, that is ∀(x, ξ) ∈ R2 × R2, C(x, ξ) # M .

• ξ +→ C(x, ξ) is even and homogeneous of degree 0: ∀ρ > 0, C(x, ρξ) = C(x, ξ).

• x +→ C(x, ξ) is continuous and satisfies: there exists some η, with b < η # 1 such that

∀x ∈ R
2, sup

z∈B(0,1)
∥z∥−2η

∫

S1

[
C(x+ z,Θ)− C(x,Θ)

]2
dΘ # Ax < ∞ . (15)

Morever x +→ Ax is bounded on any compact set of R2.

We now define our model, the Generalized Anisotropic Fractional Brownian Field.

Definition 5. Generalized Anisotropic Fractional Brownian Fields (GAFBF)
Let us consider h : R2 → [0, 1] and C satisfying Assumptions (H). We then define the GAFBF as
the following Gaussian field generalizing [31, 32] by

X(x)
def
=

∫

R2

(e j⟨x, ξ⟩ − 1)
C(x, ξ)

∥ξ∥h(x)+1
Ŵ(dξ) . (16)
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The main properties of the GAFBF X are summarized in the following propositions.

Theorem 3. The GAFBF X (16) admits at any point x0 ∈ R2, a tangent field Yx0
given by

Yx0
(x) =

∫

R2

(e j⟨x, ξ⟩ − 1)f1/2(x0, ξ)Ŵ(dξ) =

∫

R2

(e j⟨x, ξ⟩ − 1)
C(x0, ξ)

∥ξ∥h(x0)+1
Ŵ(dξ) . (17)

In particular, for each point x0, the local anisotropy function of the Gaussian field X at x0 is

Cx0
: Θ +→ C(x0,Θ)2 .

Proof. Theorem 3 is proven in Section 5.2. !

Example 3. We now derive our first example of Gaussian field with prescribed orientation. The
LAFBF introduced in [31, 32] is a particular case of GAFBF where the function C is a localized
version of the cone (7) with constant half-width δ > 0 and whose orientation may vary spatially,
that is where α : R2 → (−π/2,π/2) is now a continuously differentiable function, which is 2η–
Holderian with b < η # 1/2. One can verify that the so-called function C satisfies assumptions
(H). Applying Theorem 3, the corresponding localizable Gaussian field defined by formula (16)
admits a tangent field at any points x0 ∈ R2 and the following cone as local anisotropy:

Cx0(Θ) =
1

4δ

(
1[α(x0)−δ,α(x0)+δ](argΘ) + 1[α(x0)+π−δ,α(x0)+π+δ](argΘ)

)
. (18)

The above example shows that the tangent field of a LAFBF is actually an elementary field.
Then, using the results of Example 3.3.2 and Definition 4, we immediately deduce the following
proposition:

Proposition 8. The LAFBF defined in the Example 3 admits at each point x0 an approximate
(up to δ2) local orientation vector given by

n⃗ =

(
cosα(x0)
sinα(x0)

)
.

4.3.2. Warped Anisotropic Fractional Brownian Fields (WAFBF)

We now consider a second model, satisfying similar properties, in the same spirit as the ap-
proach developed in [34, 35, 36] but in the case where the warped Gaussian field is a H–self-similar
Gaussian field with stationary increments.

Definition 6 (Warped Anisotropic Fractional Brownian Fields). Let X be a H-sssi field,
with anisotropy function CX , as explicit in Proposition 5. Let Φ : R2 → R2 be a continuously
differentiable function. The Warped Anisotropic Fractional Brownian Field (WAFBF) ZΦ,X is
defined as the deformation of the elementary field X:

ZΦ,X(x) = X(Φ(x)) . (19)

The aim of this section is to study the local properties of such Gaussian fields.

Proposition 9. The Gaussian field ZΦ,X defined by (19) is localizable at any point x0 ∈ R2, with
tangent field Yx0

defined as

Yx0
(x) = X(DΦ(x0) x) , ∀x ∈ R

2 , (20)

where DΦ(x0) is the Jacobian matrix of Φ at point x0.

Proof. Proposition 9 is proven in Section 5.3. !
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Proposition 10. Let ZΦ,X be the WAFBF defined in Definition 6, from an elementary field
X = Xα0,δ defined by (5)-(6)-(7) and whose orientation, computed in section 3.3.2, is given by the
unit vector n⃗ = (cosα0, sinα0). In addition, we assume that the C1-differentiable deformation Φ
is a diffeomorphism on an open set U ⊂ R

2.
Then, at each point x0 ∈ U , the WAFBF ZΦ,X admits an approximate (up to δ2) local orien-

tation given by

n⃗Z(x0) =
DΦ(x0)Tn⃗

∥DΦ(x0)Tn⃗∥
.

Proof. According to Definition 4, the local orientation of ZΦ,X at x0 ∈ U is given by the one of its
tangent field Yx0

. From Proposition 9, Yx0
(x) = X(DΦ(x0) x), and since Φ is a diffeomorphism

in a neighborhood of x0, DΦ(x0) is invertible. Proposition 7 applied to L−1 = DΦ(x0) directly
leads to the result. !

Example 4 (Local rotation). We now illustrate this result considering the case α0 = 0, then the
orientation n⃗ = (cosα0, sinα0) of the elementary field X is now the unit vector n⃗ = e1 = (1, 0)T.
The deformation we consider is a local rotation governed by a continuously differentiable function
x +→ α(x). We have the following proposition:

Proposition 11. We consider the following warped field from the standard elementary field:

ZΦ,X(x) = X0,δ(Φ(x)) ,

with

Φ(x) = R−α(x)x =

(
cosα(x)x1 + sinα(x)x2

− sinα(x)x1 + cosα(x)x2

)
≡

(
Φ1(x)
Φ2(x)

)
, (21)

where α : R2 → R is a C1 function on R2 such that, on an open set U ⊂ R
2, one has:

∀x0 ∈ U, ∇α(x0) ∧ x0 =
∂α

∂x1
(x0)x0,2 −

∂α

∂x2
(x0)x0,1 ̸= −1 . (22)

Then, for each point x0 ∈ U satisfying (22), ZΦ,X admits as local orientation vector:

n⃗(x0) =
u(α(x0)) + ⟨u(α(x0))⊥,x0⟩∇α(x0)

∥u(α(x0)) + ⟨u(α(x0))⊥,x0⟩∇α(x0)∥
. (23)

with u(α(x0)) = (cos(α0(x0)), sin(α0(x0)).

Proof. Since the function α is assumed to be C1, the deformation Φ (21) is also C1. Its Jacobian
matrix is given by

DΦ(x) =

(
cosα(x) + ∂α

∂x1
(x)Φ2(x) sinα(x) + ∂α

∂x2
(x)Φ2(x)

− sinα(x)− ∂α
∂x1

(x)Φ1(x) cosα(x)− ∂α
∂x2

(x)Φ1(x)

)
,

whose determinant is

detDΦ(x) = 1 +
∂α

∂x1
(x)x2 −

∂α

∂x2
(x)x1 .

Under the assumption (22) followed by α, the determinant on the open set U is non-zero, so Φ
is a C1-diffeomorphism on U . Then, Proposition 9 and 10 hold, and at each point x0 ∈ U , ZΦ,X

admits as local orientation vector n⃗(x0) = DΦ(x0)Te1/∥DΦ(x0)Te1∥, which writes

n⃗(x0) =
u(α(x0)) + ⟨u(α(x0))⊥,x0⟩∇α(x0)

∥u(α(x0)) + ⟨u(α(x0))⊥,x0⟩∇α(x0)∥
.

!

16



Figure 1: Image texture of size 512 × 512 resulting from the simulation of the field ZΦ,X(x) = X(R−α(x)x) on

[0, 1]2, where X is the standard elementary field with parameters H = 0.5, α0 = 0 and δ = 0.3, for the following
functions α: (a) α(x1, x2) = −

π
3 (top left), (b) α(x1, x2) = −

π
2 + x1 (top right), (c) α(x1, x2) = −

π
2 + x2 (bottom

left), (d) α(x1, x2) = −
π
2 + x2

1 − x2 (bottom right).
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Some examples of realizations of ZΦ,X on the domain [0, 1]2 are displayed on Figure 1 for
different values of α, fulfilling the condition (22). Remark that the orientation vector given by
(23) is equal to u(α(x0)) = (cosα(x0), sinα(x0)) plus a term depending on the gradient of α.
Consequently, we do not exactly have a prescribed orientation governed by α.

We now inverse the problem, and investigate the construction of a deformation Φ, to obtain
a prescribed orientation α. To this aim, we will employ a conformal deformation, which has the
particularity to preserve the angles. An important result, stated in the following proposition, is
that we can prescribe the orientation α of a Gaussian field, if this orientation is supposed to be
harmonic.

Proposition 12. Let ZΦ,X(x) be the Gaussian field (19), warped by a conformal deformation Φ
defined as follows: let α : R2 → R be an harmonic function, and λ its harmonic conjugate function

such that Ψ =

(
λ
−α

)
is holomorphic (as a complex function, identifying R

2 with C). Define now

Φ as any complex primitive of exp(Ψ), as an holomorphic function on C. Then at any point x0,
an approximate (up to δ2) local orientation of ZΦ,X is

n⃗Z(x0) =

(
cos(α(x0))
sin(α(x0))

)
,

which is exactly the orientation vector defined by the angle function α.

Proof. Firstly, the existence of λ is the classical result of the existence of an harmonic conjugate
of α (see [9]). Then Ψ is holomorphic, and exp(Ψ) is holomorphic too (as the composition of
holomorphic functions). In addition, since Φ is a complex primitive of exp(Ψ) as an holomorphic
function on C, we have at any point:

Φ′(x0) = exp(Ψ(x0)) = eλ(x0) e−iα(x0)

(as a complex function in C). Moreover, since Φ is holomorphic,

Φ′(x0) =
∂Φ

∂x1
(x0) = −i

∂Φ

∂x2
(x0) ,

which leads to the Jacobian matrix:

DΦ(x0) = exp(λ(x0))

(
cos(α(x0)) sin(α(x0))
− sin(α(x0)) cos(α(x0))

)

and concludes the proof. !

Example 5 (Affine orientation functions). We consider the family of harmonic functions

α(x1, x2) = ax1 + bx2 + c ,

with a, b, c real constants. By the procedure of Proposition 12, we are able to construct the defor-
mation function Φ, whose explicit formula is

Φ(x1, x2) =
exp(ax2 − bx1)

a2 + b2

(
a sin(ax1 + bx2 + c)− b cos(ax1 + bx2 + c)
a cos(ax1 + bx2 + c) + b sin(ax1 + bx2 + c)

)
. (24)

Then we can verify that

DΦ(x)Te1 = exp(ax2 − bx1)

(
cos(ax1 + bx2 + c)
sin(ax1 + bx2 + c)

)
, n⃗(x) =

(
cosα(x)
sinα(x)

)
.

An example of simulation of such a prescribed local orientation field is provided in Figure 2, where
the angle variations are governed by the function α(x1, x2) = 2x1 − x2.
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Figure 2: Image texture of size 512× 512 resulting from the simulation of the field ZΦ,X(x) = X(Φ(x)) on [0, 1]2,
where X is the standard elementary field with parameters H = 0.5, α0 = 0 and δ = 0.3, and Φ is the deformation
function defined by (24) corresponding to the harmonic function α(x1, x2) = ax1 + bx2 + c, with (a, b) = (2,−1).

5. Proofs

This last section is devoted to the proofs of Theorem 3 and Proposition 9.

5.1. Technical lemmas
We first state and prove some lemmas that are used in the proof of Theorem 3.

Lemma 1. Assume that h is a β–Hölder function with Lipschitz constant Λh defined on R2 sat-
isfying

0 < a = inf
x∈R2

h(x) # sup
x∈R2

h(x) = b < β # 1 .

Then, for all x,y ∈ R2 and for all ξ ∈ R2,
∣∣∣∥ξ∥−h(y) − ∥ξ∥−h(x)

∣∣∣ # Λh∥y − x∥β
∣∣log∥ξ∥

∣∣
(
∥ξ∥−a−1

1∥ξ∥>1 + ∥ξ∥−b−1
1∥ξ∥!1

)
.

Proof. Let us fix ξ ∈ R2 and apply the mean value inequality to the function

h +→ ∥ξ∥−h−1 = exp(−(h+ 1) log ∥ξ∥) .

We obtain that
∣∣∣∥ξ∥−h2−1 − ∥ξ∥−h1−1

∣∣∣ # |h1 − h2|
∣∣log∥ξ∥

∣∣
(
∥ξ∥−α−1

)
,

with α = min(h1, h2) if ∥ξ∥ > 1 and α = max(h1, h2) if ∥ξ∥ < 1. This leads to the inequality:

∀(x,y) ∈ (R2)2, ∀ξ ∈ R
2,

∣∣∣∥ξ∥−h(y) − ∥ξ∥−h(x)
∣∣∣ # |h(y)− h(x)|

∣∣log∥ξ∥
∣∣

×
(
∥ξ∥− infz h(z)−1

1∥ξ∥>1 + ∥ξ∥− supz h(z)−1
1∥ξ∥!1

)
.

The holderianity of h allows to conclude. !

Lemma 2. Assume that h : R2 → [0, 1] and C : R2 × R2 → R+ are two functions satisfying
assumptions (H). Let x ∈ R2. Then, there exists some constant Kx > 0 depending only on x
such that for any (ρ,w) ∈ R+ × R2 with |ρ| # 1 and ∥w∥ # 1 we have
∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2 [

f1/2(x+ ρw, ξ)− f1/2(x, ξ)
]2

dξ # Kx|ρ|
2β max(∥w∥2β , ∥w∥2η)

(
1 + ∥x∥2

)
.

Moreover the function x +→ Kx is bounded on any compact set.
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Proof. Observe that

C(x+ ρw, ξ)

∥ξ∥h(x+ρw)+1
−

C(x, ξ)

∥ξ∥h(x)+1
=

C(x+ ρw, ξ)

∥ξ∥h(x+ρw)+1
−

C(x+ ρw, ξ)

∥ξ∥h(x)+1
+

C(x+ ρw, ξ)

∥ξ∥h(x)+1
−

C(x, ξ)

∥ξ∥h(x)+1
.

Using the classical inequality |a− b|2 # 2(|a|2 + |b|2), we deduce that

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2 [

f1/2(x+ ρw, ξ)− f1/2(x, ξ)
]2

dξ ,

# 2

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2
[
C(x+ ρw, ξ)

∥ξ∥h(x+ρw)+1
−

C(x+ ρw, ξ)

∥ξ∥h(x)+1

]2
dξ

+2

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2

∥ξ∥2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ .

To bound the latter integral
∫
R2

∣

∣

∣e j⟨x, ξ⟩−1
∣

∣

∣

2

∥ξ∥2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ, we set ξ = rΘ with

(r,Θ) ∈ R∗
+ × S1 and use the homogeneity of C. It yieds:

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2

∥ξ∥2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ ,

=

∫

R∗
+

|e js − 1|2

s2h(x)+1

[∫

S1

| ⟨x, Θ⟩ |2h(x)
[
C(x+ ρw,Θ)− C(x,Θ)

]2
dΘ

]
ds ,

# ∥x∥2h(x)
[∫

R∗
+

|e js − 1|2

s2h(x)+1
ds

][∫

S1

[
C(x+ ρw,Θ)− C(x,Θ)

]2
dΘ

]
,

where we set s = r ⟨x, Θ⟩ in the second equality. We now use condition (15) of assumptions (H)
with z = ρw ∈ B(0, 1). Hence,

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2

∥ξ∥2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ # Ax |ρ|2η∥w∥2η∥x∥2h(x)

[∫

R∗
+

|e js − 1|2

s2h(x)+1
ds

]
.

Then, since ∥x∥2h(x) # ∥x∥2 + 1 is always valid (h(R2) ⊂ [0, 1]), one has

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2

∥ξ∥2h(x)+2

[
C(x+ ρw, ξ)− C(x, ξ)

]2
dξ # Bx∥w∥2η|ρ|2η

(
∥x∥2 + 1

)
, (25)

with

Bx = Ax

∫

R∗
+

|e js − 1|2

s2h(x)+1
ds < ∞ .

We now bound
∫
R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2 [

C(x+ρw,ξ)
∥ξ∥h(x+ρw)+1 − C(x+ρw,ξ)

∥ξ∥h(x)+1

]2
dξ. Since C is bounded and by

Lemma 1 we have for some A > 0 depending only on h and C:

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2
[
C(x+ ρw, ξ)

∥ξ∥h(x+ρw)+1
−

C(x+ ρw, ξ)

∥ξ∥h(x)+1

]2
dξ

# Λh,C |ρ|
2β∥w∥2β

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2
[∣∣log ∥ξ∥

∣∣2
(
∥ξ∥−2a−2

1∥ξ∥>1 + ∥ξ∥−2b−2
1∥ξ∥!1

)]
dξ .
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Since
∣∣∣e j⟨x, ξ⟩ − 1

∣∣∣ # min(∥x∥ · ∥ξ∥, 2), we directly get that

∫

R2

∣∣∣e j⟨x, ξ⟩ − 1
∣∣∣
2
[
C(x+ ρw, ξ)

∥ξ∥h(x+ρw)+1
−

C(x+ ρw, ξ)

∥ξ∥h(x)+1

]2
dξ # Λ̃ |ρ|2β∥w∥2β

(
∥x∥2 + 1

)
. (26)

with

Λ̃ = Λh,C

[∫

R2

∣∣log ∥ξ∥
∣∣2
(
∥ξ∥−2a−2

1∥ξ∥>1 + ∥ξ∥−2b
1∥ξ∥!1

)
dξ

]
.

The conclusion then follows from (25) and (26) with Kx = 2Bx + 2Ã. The fact that x +→ Kx is
bounded on any compact set comes from the fact that x +→ Ax is bounded on any compact set. !

5.2. Proof of Theorem 3

Let X be the Gaussian field defined by formula (16), and x0 ∈ R2. Let Zx0
be the Gaussian

field

Zx0,ρ(u) =
X(x0 + ρu)−X(x0)

ρh(x0)
,

and Yx0
the H-sssi field defined by formula (17). We are going to prove that Yx0

is the tangent
field of X at x0 ∈ R2, that is

{
Zx0,ρ(h)

}
h∈R2

d
−→

{
Yx0

(h)
}
h∈R2 .

as ρ → 0, in the sense of weak convergence of stochastic processes. The proof is divided in two
steps :

(i) We first prove that the finite dimensional distribution of Zx0,ρ converge to those of Yx0
as

ρ→ 0:
(Zx0,ρ(h1), . . . , Zx0,ρ(hN )) −→ (Yx0

(h1), . . . , Yx0
(hN )) ,

which means the convergence of the measures of these finite dimensional random vectors on
RN . The Lévy theorem insures that it is equivalent to prove the converge in term of the
characteristic functions of these random vectors, which is, in the Gaussian case, equivalent
to show that we have convergence with respect to the covariance:

∀(u,v) ∈ (R2)2, lim
ρ→0

E[Zx0,ρ(u)Zx0,ρ(v)] = E(Yx0
(u)Yx0

(v)) . (27)

(ii) Thereafter, we set ρn = 1/n ∈ [0, 1] and prove that the sequence of random fields (Zn)n∈N∗
def
=

(Zx0,ρn)n∈N∗ , satisfies a tightness property, which is fulfilled if (Zn)n∈N∗ satisfies the following
Kolmogorov criteria (see for example [37] p.64):

∀T > 0, ∀u,v ∈ [−T, T ]2, sup
n>1

E(|Zn(u)− Zn(v)|
γ1) # C0(T )∥u− v∥2+γ2 , (28)

for some positive constant C0(T ) which may depend on T and γ1, γ2 which are universal
positive constants.

Remark 4. Since Zx0,ρ(u)− Zx0,ρ(v) is a Gaussian vector, then for all γ1 > 0

sup
ρ∈(0,1)

∥u− v∥−γ0γ1E
[∣∣Zx0,ρ(u)− Zx0,ρ(v)

∣∣γ1
]

and [
sup

ρ∈(0,1)
∥u− v∥−2γ0E

∣∣Zx0,ρ(u)− Zx0,ρ(v)
∣∣2
]γ1/2
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Figure 3: Ilustration of a bump function ϕ0.

are equal up to a multiplicative constant depending only on γ1. The inequality (28) is satisfied by
considering γ1 > 2/γ0 with γ2 = γ0γ1 − 2. Therefore, it will be sufficient to verify that 0 # γ0 # 1
such that

∀T > 0, ∀u,v ∈ [−T, T ]2, sup
n>1

E(|Zn(u)− Zn(v)|
2) # C0(T )∥u− v∥2γ0 . (29)

Remark 5. Since the notion of tangent field is a local notion at point x0, it is equivalent to
determine the tangent field of X at x0 or that of X̃(x) = ϕx0(x)X(x) at point x0, where ϕ is a
C∞ function which is equal to 1 on a neighborhood of x0 (e.g. the ball B(x0, a) of radius a) then
decreases and vanished outside a compact set (e.g. the ball B(x0, b)). Such bump functions can
easily be constructed [38], from a 1-D function ϕ0 as illustrated in Figure 3 by taking ϕx0(x) =
ϕ0(∥x− x0∥). Then, we define

Z̃x0,ρ(u) =
X̃(x0 + ρu)− X̃(x0)

ρh(x0)
.

In step (i), computing the limit for given u and v, nothing changes since from a certain rank, ρn
is such that x0 + ρnu and x0 + ρnv fall in the ball B(x0, a) in which X̃ = X.

In step (ii), with Z̃n(u)− Z̃n(v) = ρ−h(x0)
n (X̃(x0 + ρnu)− X̃(x0 + ρnv)), the following inequality

sup
n>1

E(|Z̃n(u)− Z̃n(v)|
2) # C0(T )∥u− v∥2γ0 , (30)

requires to distinguish three cases:

• If u and v are in B(x0, b)c, then X̃(x0 + ρnu) = X̃(x0 + ρnv) = 0 and so (30) is satisfied.

• If u ∈ B(x0, b) and v ∈ B(x0, b)c, then

Z̃n(u)− Z̃n(v) = ρ−h(x0)
n X̃(x0 + ρnu) ,

= ρ−h(x0)
n

(
ϕx0(x0 + ρnu)− ϕx0(x0 + ρnv)

)
X(x0 + ρnu) ,

with
∣∣ϕx0(x0 + ρnu)− ϕx0(x0 + ρnv)

∣∣2 # A(T )ρ2n ∥u− v∥2 since ϕ is C∞ that is a Lipschitz
function and E

[
X(x0 + ρnu)2

]
# B(T ) by continuity of the covariance function, on the

compact set [−T, T ]2. Again, (30) is satisfied.

• It remains to deal with the case where u and v are in B(x0, b), that is to say we can restrict
ourselves for the proof to the case where u and v are in the neighborhood of x0 as small as
we want. We will take for the purposes of the demonstration b = 1/2, in other words we will
be able to restrict ourselves to the compact set [−T, T ] = [−1/2, 1/2].

Now we prove these two conditions (27) and (28).

(i) First step:
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We aim at proving (27) that is for all (u,v) ∈ (R2)2:

lim
ρ→0

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))]

ρ2h(x0)
= E(Yx0

(u)Yx0
(v)) . (31)

Let us take (u,v) ∈ (R2)2 and consider ρ # ρ0 such that ρ0u, ρ0v ∈ B(0, 1/2).

First observe that, by definition of X , one has

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))] =

∫

R2

gu,v(x0, ξ) dξ , (32)

where we set

gu,v(x0, ξ) =

[(
e j⟨x0+ρu, ξ⟩ − 1

)
f1/2(x0 + ρu, ξ)−

(
e j⟨x0, ξ⟩ − 1

)
f1/2(x0, ξ)

]

×

[(
e−j⟨x0+ρv, ξ⟩ − 1

)
f1/2(x0 + ρv, ξ)−

(
e−j⟨x0, ξ⟩ − 1

)
f1/2(x0, ξ)

]
,

and f1/2(x, ξ) = C(x, ξ)/∥ξ∥h(x)+1. We now split the integral into four terms:

E[(X(x0 + ρu)−X(x0))(X(x0 + ρv)−X(x0))]

=

∫

R2

(
e jρ⟨u, ξ⟩ − 1

)(
e−jρ⟨v, ξ⟩ − 1

)
f1/2(x0 + ρu, ξ)f1/2(x0 + ρv, ξ) dξ (I1)

+

∫

R2

(
e jρ⟨u, ξ⟩ − 1

)(
1− e j⟨x0, ξ⟩

)
f1/2(x0 + ρu, ξ)

[
f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)

]
dξ (I2)

+

∫

R2

(
1− e−j⟨x0, ξ⟩

)(
e−jρ⟨v, ξ⟩ − 1

) [
f1/2(x0 + ρu, ξ)− f1/2(x0, ξ)

]
f1/2(x0 + ρv, ξ) dξ (I3)

+

∫

R2

∣∣∣e j⟨x0, ξ⟩ − 1
∣∣∣
2 [

f1/2(x0 + ρu, ξ)− f1/2(x0, ξ)
] [

f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)
]
dξ (I4)

= I1 + I2 + I3 + I4 .

In order to prove (31), we now investigate the behavior of each integral I1, I2, I3, I4 when ρ→ 0.

• Study of the first term I1

We suppose below that ρ > 0: indeed, since ξ +→ C(x, ξ) is even, the case ρ < 0 derives in the
same way. In the integral I1, we set ζ = ρξ (ζ = −ρξ if ρ < 0), dζ = ρ2 dξ and use the explicit
expression of f , then:

I1 = ρh(x0+ρu)+h(x0+ρv)

∫

R2

(
e j⟨u, ζ⟩ − 1

)(
e−j⟨v, ζ⟩ − 1

) C(x0 + ρu, ζ/ρ)C(x0 + ρv, ζ/ρ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2
dζ .

By homogeneity of ξ +→ C(x, ξ), we deduce:

ρ−2h(x0)I1 = ρh(x0+ρu)+h(x0+ρv)−2h(x0)

×

∫

R2

(
e j⟨u, ζ⟩ − 1

)(
e−j⟨v, ζ⟩ − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2
dζ .

Observe now that

ρh(x0+ρu)+h(x0+ρv)−2h(x0) = exp
(
log ρ [h(x0 + ρu) + h(x0 + ρv)− 2h(x0)]

)
.

Using that h is β−Hölder, we obtain

|h(x0+ρu)+h(x0+ρv)−2h(x0)| # |h(x0+ρu)−h(x0)|+|h(x0+ρv)−h(x0)| $ (∥u∥β+∥v∥β)|ρ|β .
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Since β > 0 by assumption, and lim
ρ→0+

ρβ log ρ = 0, we then deduce the limit:

lim
ρ→0+

log ρ [h(x0 + ρu) + h(x0 + ρv)− 2h(x0)] = 0 , (33)

and hence lim
ρ→0+

ρh(x0+ρu)+h(x0+ρv)−2h(x0) = 1.

It implies that

lim
ρ→0+

ρ−2h(x0)I1 = lim
ρ→0+

∫

∥ζ∥!1

(
e j⟨u, ζ⟩ − 1

)(
e−j⟨v, ζ⟩ − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2
dζ

+ lim
ρ→0+

∫

∥ζ∥"1

(
e j⟨u, ζ⟩ − 1

)(
e−j⟨v, ζ⟩ − 1

) C(x0 + ρu, ζ)C(x0 + ρv, ζ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2
dζ .

We now apply the Lebesgue’s Dominated Convergence Theorem to each integral separately. We
first bound the two integrands as follows:

∀∥ζ∥ # 1,

∣∣∣∣∣(e
j⟨u, ζ⟩ − 1)(e−j⟨v, ζ⟩ − 1)

C(x0 + ρu, ζ)C(x0 + ρv, ζ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2

∣∣∣∣∣ #
M2∥u∥∥v∥∥ζ∥2

∥ζ∥2(b+1)
,

∀∥ζ∥ " 1,

∣∣∣∣∣(e
j⟨u, ζ⟩ − 1)(e−j⟨v, ζ⟩ − 1)

C(x0 + ρu, ζ)C(x0 + ρv, ζ)

∥ζ∥h(x0+ρu)+h(x0+ρv)+2

∣∣∣∣∣ # 4M2 1

∥ζ∥2(a+1)
,

In the first line we used |e jt − 1| # 2 | sin(t/2)| # |t|, and the Cauchy-Schwarz inequality applied
to the R2-scalar product. Secondly, since a > 0 and b < 1 by assumption, we easily check that the
functions ζ +→ ∥ζ∥−2b and ζ +→ ∥ζ∥−2(a+1) are respectively integrable on ∥ζ∥ # 1 and ∥ζ∥ " 1.
The Lebesgue’s Dominated Convergence Theorem then implies that

lim
ρ→0+

ρ−2h(x0)I1 =

∫

R2

(
e j⟨u, ζ⟩ − 1

)(
e−j⟨v, ζ⟩ − 1

) C(x0, ζ)2

∥ζ∥2h(x0)+2
dζ = E(Yx0

(u)Yx0
(v)) .

since the functions h and x → C(x, ζ) are continuous.

• Study of the other terms I2, I3, I4

We now prove that the three other integrals I2, I3, I4 are negligible with respect to the first
one when ρ is small.

We only detail the negligibility of I2, the other cases I3 and I4 being similar. Using the Cauchy–
Schwarz inequality, we get that

I2 #

[∫

R2

∣∣∣e jρ⟨u, ξ⟩ − 1
∣∣∣
2
f(x0 + ρu, ξ) dξ

]1/2

×

[∫

R2

∣∣∣e j⟨x0, ξ⟩ − 1
∣∣∣
2 [

f1/2(x0 + ρv, ξ)− f1/2(x0, ξ)
]2

dξ

]1/2

.

The analysis of the first integral has already been done in the study of I1 taking u = v. We then
obtain

lim
ρ→0

ρ−2h(x0)

∫

R2

∣∣∣e jρ⟨u, ξ⟩ − 1
∣∣∣
2
f(x0 + ρu, ξ) dξ = E[Yx0

(u)2] . (34)

The bound of the second integral directly comes from Lemma 2. Since β " supx h(x), we get that

lim
ρ→0

ρ−2h(x0)I2 = 0 .
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The same approach also yields for I3 and I4, leading to

lim
ρ→0

ρ−2h(x0)I3 = lim
ρ→0

ρ−2h(x0)I4 = 0 .

which concludes the proof of (31).

(ii) Second step:

We now have to prove that the sequence (Zn)n∈N∗
def
= (Zx0,ρn)n∈N∗ satisfies (28), with ρ ≡

ρn = 1
n ∈ [0, 1] and with u and v restricted to B(0, 1/2) from Remark 5, that in the following

T = 1/2. Then, we have:

Zx0,ρ(u)− Zx0,ρ(v)

=
1

ρh(x0)

∫

R2

[(
e j⟨x0+ρu, ξ⟩ − 1

)
f1/2(x0 + ρu)−

(
e j⟨x0+ρv, ξ⟩ − 1

)
f1/2(x0 + ρv)

]
Ŵ(dξ) .

Hence,

E

[(
Zx0,ρ(u)− Zx0,ρ(v)

)2]

=
1

ρ2h(x0)

∫

R2

∣∣∣∣
(
e j⟨x0+ρu, ξ⟩ − 1

)
f1/2(x0 + ρu, ξ)−

(
e j⟨x0+ρv, ξ⟩ − 1

)
f1/2(x0 + ρv, ξ)

∣∣∣∣
2

dξ ,

=
1

ρ2h(x0)

∫

R2

∣∣∣∣
(
e j⟨x0+ρu, ξ⟩ − 1

)(
f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)

)

−
(
e j⟨x0+ρv, ξ⟩ − 1− (e j⟨x0+ρu, ξ⟩ − 1)

)
f1/2(x0 + ρv, ξ)

∣∣∣∣
2

dξ ,

#
2

ρ2h(x0)

∫

R2

∣∣∣e j⟨x0+ρu, ξ⟩ − 1
∣∣∣
2 (

f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)
)2

dξ

+
2

ρ2h(x0)

∫

R2

∣∣∣e j⟨ρ(v−u), ξ⟩ − 1
∣∣∣
2
f(x0 + ρv) dξ .

the last inequality coming from |a− b|2 # 2|a|2 + 2|b|2.
We now apply Lemma 2 with x = x0 + ρu and w = v−u ∈ B(0, 1). It implies the following

bound for the first integral

2

ρ2h(x0)

∫

R2

∣∣∣e j⟨x0+ρu, ξ⟩ − 1
∣∣∣
2 (

f1/2(x0 + ρu, ξ)− f1/2(x0 + ρv, ξ)
)2

dξ ,

# 2

(
sup

y∈B(x0,2T )
Ky

)(
1 + 2∥x0∥

2 + 2∥u∥2
)
max

(
∥v − u∥2β, ∥v − u∥2η

)
|ρ|2β−2h(x0) ,

# K1|ρ|
2β−2h(x0) max

(
∥v − u∥2β, ∥v − u∥2η

)
, (35)

with K1 = 2

(
sup

y∈B(x0,2T )
Ky

)(
1 + 2∥x0∥

2 + 4T 2
)
and β − h(x0) positive.

To bound the second one observe that C is homogeneous w.r.t. the second variable and
bounded. Set ζ = ρξ∥u− v∥ and deduce that

2

ρ2h(x0)

∫

R2

∣∣∣e j⟨ρ(v−u), ξ⟩ − 1
∣∣∣
2
f(x0 + ρv) dξ

# 2∥u− v∥2h(x0+ρu)∥C∥∞ρ
2h(x0+ρu)−2h(x0)

×

∫

R2

∣∣∣e j⟨Θ, ζ⟩ − 1
∣∣∣
2 (

∥ζ∥−2a−2
1∥ζ∥>1 + ∥ζ∥−2b−2

1∥ζ∥!1

)
dζ ,
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with Θ = (u − v)/∥u− v∥. By the same arguments than in (33) we have that

lim
ρ→0

ρ2(h(x0+ρv)−h(x0)) = 1 ,

so it has a finite upper bound A1 > 0, which is achieved on a compact by continuity

A1 = max
ρ,v

{
(ρ,v) ∈ [0, 1]× [−T, T ]2, ρ2(h(x0+ρv)−h(x0))

}
.

Identically we have ∥u− v∥2h(x0+ρv) = ∥u− v∥2(h(x0+ρv)−h(x0))∥u− v∥2h(x0) and the first term
tends to 1, then the function (ρ,u,v) +→ ∥u − v∥2(h(x0+ρv)−h(x0)) also achieves its upper bound
A2 > 0. Thus,

2∥u− v∥2h(x0+ρu)∥C∥∞ρ
2h(x0+ρu)−2h(x0) # 2A1A2∥C∥∞∥u− v∥2h(x0) .

Hence, using that
∣∣∣e j⟨Θ, ζ⟩ − 1

∣∣∣
2
# min(2, ∥Θ∥∥ζ∥) = min(2, ∥ζ∥),

2

ρ2h(x0)

∫

R2

∣∣∣e j⟨ρ(v−u), ξ⟩ − 1
∣∣∣
2
f(x0 + ρv, ξ) dξ # K2∥u− v∥2h(x0) , (36)

with K2 = 2A1A2∥C∥∞
∫
R2 min(2, ∥ζ∥2)(∥ζ∥−2a−21∥ζ∥>1 + ∥ζ∥−2b1∥ζ∥!1) dζ.

Since K1,K2 are two positive constants depending only on T , inequalities (35) and (36) imply
that

E

[(
Zx0,ρ(u)− Zx0,ρ(v)

)2]
# K2∥u−v∥2h(x0)

[
1 +

K1

K2
max

(
∥v − u∥2(β−h(x0)), ∥v − u∥2(η−h(x0))

)]
,

and since β − h(x0) > and η − h(x0) > 0, the second factor achieved its bounds on the compact
set [−T, T ]2 × [−T, T ]2, hence

sup
ρ∈(0,1)

∥u− v∥−2h(x0)E

[(
Zx0,ρ(u)− Zx0,ρ(v)

)2]
< ∞ .

Which proves the inequality (28) from Remark 4 with γ0 = h(x0). !

The proof of the points (i) and (ii) completes the proof of the Proposition 3.

5.3. Proof of Proposition 9

Let x0 ∈ R
2. Since X is H–self-similar, one has

X(x) =

∫

R2

(e j⟨x,ξ⟩ − 1)f1/2(ξ) Ŵ(dξ) ,

with f(ξ) = CX(ξ) ∥ξ∥−2H−2. Then,

ZΦ,X(x) = X(Φ(x)) =

∫

R2

(e j⟨Φ(x),ξ⟩ − 1)f1/2(ξ) Ŵ(dξ) .

As for the proof of Proposition 3 in Section 5.2, we divide the following proof into two steps.

(i) First step:
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Let u,v ∈ R2, and consider:

1

ρ2H
E

[(
ZΦ,X(x0 + ρu)− ZΦ,X(x0)

) (
ZΦ,X(x0 + ρv)− ZΦ,X(x0)

)]

=
1

ρ2H

∫

R2

e j⟨Φ(x0), ξ⟩
(
e j⟨Φ(x0+ρu)−Φ(x0), ξ⟩ − 1

)
e−j⟨Φ(x0), ξ⟩

(
e−j⟨Φ(x0+ρv)−Φ(x0), ξ⟩ − 1

)
f(ξ) dξ ,

=
1

ρ2H

∫

R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ρξ

〉

− 1

)(
e
−j

〈

Φ(x0+ρv)−Φ(x0)
ρ , ρξ

〉

− 1

)
f(ξ) dξ ,

=
1

ρ2H

∫

R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉

− 1

)(
e
−j

〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉

− 1

)
f(ζ/ρ) dζ/ρ2 ,

=
1

ρ2H

∫

R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉

− 1

)(
e
−j

〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉

− 1

)
ρ2H+2f(ζ) dζ/ρ2 ,

=

∫

R2

(
e
j
〈

Φ(x0+ρu)−Φ(x0)
ρ , ζ

〉

− 1

)(
e
−j

〈

Φ(x0+ρv)−Φ(x0)
ρ , ζ

〉

− 1

)
f(ζ) dζ .

To compute the limit of this quantity when ρ → 0, let us denote by g(ρ, ζ) the integrand of the
last integral. We have

lim
ρ→0

g(ρ, ζ) =
(
e j⟨DΦ(x0)u, ζ⟩ − 1

)(
e−j⟨DΦ(x0)v, ζ⟩ − 1

)
f(ζ) .

Now we have to bound the integrand |g(ρ, ζ)|: using the inequality |ejx − 1| # min(2, |x|), one has

|g(ρ, ζ)| # min

⎛

⎝2,

∣∣∣∣∣

〈
Φ(x0 + ρu)−Φ(x0)

ρ
, ζ

〉∣∣∣∣∣

⎞

⎠min

⎛

⎝2,

∣∣∣∣∣

〈
Φ(x0 + ρv)−Φ(x0)

ρ
, ζ

〉∣∣∣∣∣

⎞

⎠ f(ζ) ,

# min

(
2,

1

ρ

∥∥Φ(x0 + ρu)−Φ(x0)
∥∥ ∥ζ∥

)
min

(
2,

1

ρ

∥∥Φ(x0 + ρv)−Φ(x0)
∥∥ ∥ζ∥

)
f(ζ) ,

# min

(
2,

1

ρ
sup

[x0,x0+ρu]

∥∥Φ′(x)
∥∥ ∥ρu∥ ∥ζ∥

)
min

(
2,

1

ρ
sup

[x0,x0+ρv]

∥∥Φ′(x)
∥∥ ∥ρv∥ ∥ζ∥

)
f(ζ) ,

# min
(
2,K ∥u∥ ∥ζ∥

)
min

(
2,K ∥v∥ ∥ζ∥

)
f(ζ) ,

# min(2, C ∥ζ∥)2f(ζ) ≡ G(ζ) .

The second inequality is obtained by Cauchy–Schwarz inequality, the third by mean value inequal-
ity, the forth under the assumption that Φ which is continuously differentiable so

∥∥Φ′
∥∥ # K, the

fifth with C = Kmax(∥u∥ , ∥v∥). Finally, we show that G is integrable since:
∫

R2

G(ζ) dζ =

∫

R2

min(2, C ∥ζ∥)2f(ζ) dζ ,

=
1

C2

∫

R2

min(2, ∥ξ∥)2f

(
ξ

C

)
dξ ,

=
C2H+2

C2

∫

R2

min(2, ∥ξ∥)2f(ξ) dξ ,

# C2H

∫

R2

min(4, ∥ξ∥2)f(ξ) dξ < +∞ .

where we have used the homogeneity of f , and Proposition 4. Hence, using the Lebesgue’s Domi-
nated Convergence Theorem, we obtain

lim
ρ→0

1

ρ2H
E[(ZΦ,X(x0 + ρu)− ZΦ,X(x0))(ZΦ,X(x0 + ρv)− ZΦ,X(x0))] = E[Yx0

(u)Yx0
(v)]

where we denoted

Yx0
(u) =

∫

R2

(
e j⟨DΦ(x0)u, ξ⟩ − 1

)
f1/2(ξ)Ŵ(dξ) ,
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which is by definition the tangent field.

(ii) Second step:

We then prove that the convergence holds in the sense of finite dimensional distributions. To
deduce Proposition 9, we follow the same way as in Step 2 of Theorem 3 a Kolmogorov criteria.

E

[(
ZΦ,X(x0 + ρu)− ZΦ,X(x0)

ρH
−

ZΦ,X(x0 + ρu)− ZΦ,X(x0)

ρH

)2
]

=
1

ρ2H

∫

R2

∣∣∣e j⟨Φ(x0+ρu), ξ⟩ − e j⟨Φ(x0+ρv), ξ⟩
∣∣∣
2
f(ξ) dξ ,

=
1

ρ2H

∫

R2

∣∣∣e j⟨Φ(x0+ρu)−Φ(x0+ρv), ξ⟩ − 1
∣∣∣
2
f(ξ) dξ ,

=

∫

R2

∣∣∣∣e
j
〈

Φ(x0+ρu)−Φ(x0+ρv)
ρ , ζ

〉

− 1

∣∣∣∣
2

f(ζ) dζ ,

=

∫

R∗
+

∣∣e js − 1
∣∣2

s2H+1

[∫

S1

∣∣∣∣

〈
Φ(x0 + ρu)−Φ(x0 + ρv)

ρ
, Θ

〉 ∣∣∣∣
2H

CX(Θ) dΘ

]
ds ,

#

∥∥∥∥
Φ(x0 + ρu)−Φ(x0 + ρv)

ρ

∥∥∥∥
2H
⎡

⎣
∫

R∗
+

∣∣e js − 1
∣∣2

s2H+1
ds

⎤

⎦
[∫

S1

CX(Θ) dΘ

]
.

with s = r
〈

Φ(x0+ρu)−Φ(x0+ρv)
ρ , Θ

〉
. Let denote by IH the first integral above and IC the second

one. Then, since Φ is C1, one have

E

[(
ZΦ,X(x0 + ρu)− ZΦ,X(x0)

ρH
−

ZΦ,X(x0 + ρu)− ZΦ,X(x0)

ρH

)2
]

#
IHIC
ρ2H

(
sup

[x0+ρu,x0+ρv]
∥Φ′(x)∥∥ρ(u− v)∥

)2H

,

# IHIC∥Φ
′∥2H∥u− v∥2H ,

# C0∥u− v∥2H .

with C0 = IHIC∥Φ′∥2H . We conclude like at the end of Step 2 of Theorem 3.
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