

LOCALLY ANISOTROPIC FRACTIONAL BROWNIAN FIELD { KÉVIN POLISANO, MARIANNE CLAUSEL, VALÉRIE PERRIER AND LAURENT CONDAT }

INTRODUCTION

We introduce a new class of Gaussian fields, called *Locally Anisotropic Fractional Brownian Fields*, with prescribed local orientation and Hurst index at any point. These fields are a local version of a specific class of anisotropic self-similar Gaussian fields with stationary increments.

LAFBF WITH HURST INDEX CONSTANT

 α_0 being now a differentiable function on \mathbb{R}^2 . The tangent field of a LAFBF (a) at a point x_0 (in red) with prescribed orientation $\alpha_0(x_0)$ (in yellow) is an elementary field (b) with the same orientation.

LAFBF WITH HURST FUNCTION $h(x)$

We give a more general definition of LAFBF with the Hurst index varying spatially $x \in \mathbb{R}^2 \mapsto h(x)$

Figure 1: $\alpha_0(x_1, x_2) = -\pi/2 + x_2$, $\alpha = 0.1$, $H \in \{0.1, 0.5\}$

We now define our new Gaussian model as a local version of the elementary field that we call *Locally Anisotropic Fractional Brownian Field* (LAFBF):

$$
B^H{}_{\alpha_0,\alpha}(x)=\int_{\mathbb{R}^2}(e^{ix\cdot\xi}-1)\frac{1_{[-\alpha,\alpha]}(\arg\xi-\alpha_0(x))}{\|\xi\|^{H+1}}d\widehat{W}(\xi)
$$

 $v_{H,\theta_1,\theta_2}(x)=2^{2H-1}\gamma(H)C_{H,\theta_1,\theta_2}(\arg x)|x|^{2H}$ $C_{H,\theta_1,\theta_2}(\theta)=$ $\sqrt{ }$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ β_H $\left(\frac{1-\sin(\theta_2-\theta)}{2} \right)$ 2 \setminus $+ \beta_H$ $\left(\frac{1-\sin(\theta_1-\theta)}{\theta_1-\theta_2} \right)$ 2 $\Big)$, if $\theta_1 \leqslant \theta + \pi/2 \leqslant \theta_2$ β_H $\left(\frac{1+\sin(\theta_2-\theta)}{2} \right)$ 2 \setminus $+ \beta_H$ $\left(\frac{1+\sin(\theta_1-\theta)}{1-\theta} \right)$ 2 $\Big)$, if $\theta_1 \leqslant \theta - \pi/2 \leqslant \theta_2$ $\Big\}$ β_H $\left(\frac{1-\sin(\theta_2-\theta)}{2} \right)$ 2 \setminus $-\beta_H$ $\left(\frac{1-\sin(\theta_1-\theta)}{\theta_1-\theta_2} \right)$ 2 \setminus   , otherwise

 $\beta_H=\int_0^t$ 0 $u^{H-1/2}(1-u)^{H-1/2}$ is the incomplete Beta function and $\gamma(H) = \frac{\pi}{H\Gamma(2H)}$ $H\Gamma(2H)\sin(H\pi)$

2 Generate N LAFBF oriented by $\alpha_0(x)$ with **Hurst index** H_n as in Fig.1. Each LAFBF is computed by the tangent field method : $B^{H_n}{}_{\alpha_0,\alpha}(x_0) = Y_{x_0}(x_0)$ where Y_{x_0} is an H_n Hurst elementary field oriented by $\alpha_0(x_0)$ ❷ **Interpolate finally the complete LAFBF by a kriging method** using the N images from the discretization (H_n) of $z \mapsto h(z)$. The kriging relies on the covariance of the LAFBF : $\mathbf{Cov}(B$ $h(z_i)$ $\alpha_0(x_i,y_i),$ α $(x_i, y_i), B$ $h(z_j)$ $\alpha_0(x_j,y_j) ,\!\alpha$ $(x_j, y_j)) =$ $r_{H, \theta_1, \theta_2}((x_i, y_i), (x_j, y_j))$ with parameters :

$$
B^h{}_{\alpha_0,\alpha}(x) = \int_{\mathbb{R}^2} (e^{ix\cdot\xi} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg\xi - \alpha_0(x))}{\|\xi\|^{h(x)+1}} d\widehat{W}(\xi)
$$

Method of simulation

0 Generate elementary fields. Let α_0 be an angle, the synthesis of an elementary field oriented in the direction α_0^{\perp} 0 can be performed using either the turning band method either the cholesky method by the following covariance with $[\theta_1, \theta_2] \equiv [\alpha_0 - \alpha, \alpha_0 + \alpha] : r_{H, \theta_1, \theta_2}(x, y) \equiv$ $\mathsf{Cov}(B^H{}_{\alpha_0,\alpha}(x),B^H{}_{\alpha_0,\alpha}(y)) = v_{H,\theta_1,\theta_2}(x) +$ $v_{H,\theta_1,\theta_2}(y) - v_{H,\theta_1,\theta_2}(x-y)$ where

> **Figure 2:** A LAFBF with a radial Hurst function $h(x_1, x_2) = 0.1 + \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2}$

Let $0 < H < 1$. The *fractional Brownian field* B^H with Hurst index H , is the unique centered Gaussian field with stationary increments :

- $z \in \mathbb{R}^2$, $B^H(\cdot + z) B^H(z) \stackrel{\mathcal{L}}{=} B^H(\cdot) B^H(0)$,
- self-similar : $\forall \lambda \in \mathbb{R}^*, B^H(\lambda) \stackrel{\mathcal{L}}{=}$ $\stackrel{\mathcal{L}}{=} \lambda^H B^H(\cdot),$
- isotropic : \forall rotation R in \mathbb{R}^2 , $B^H \circ R \stackrel{\mathcal{L}}{=} B^H$,

Figure 3: H=0.2 (on the left) and H=0.7 (on the right)

The random field X is locally asymptotically selfsimilar of order $H \in (0,1)$ if for any $h \in \mathbb{R}^2$ the random field

The basic idea of kriging is to predict the value of a random field $Z(\cdot)$ at an unobserved location s_0 by computing a weighted average of the known sampled values of the field in the neighborhood $V(s_0)$ of the point s_0 .

The Best Linear Unbiased Estimator (BLUE) is obtained with λ $\hat{\lambda} = \mathbb{E}[\mathbf{Z}\mathbf{Z}^t]^{-1}\mathbf{Cov}(\mathbf{Z}, Z(s_0))$

Figure 5: Representation of the 18 neighbors $V(s_0)$ of s_0

- $H =$ $h(z_i)+h(z_j)$
- $\theta_2 = \min(\alpha_0(x_i, y_i) + \alpha, \alpha_0(x_j, y_j) + \alpha)$ 2 $\theta_1 = \max(\alpha_0(x_i, y_i) - \alpha, \alpha_0(x_j, y_j) - \alpha)$

GLOBAL ANISOTROPIC FIELDS

In its harmonizable representation which is

$$
B^H(x) = \int_{\mathbb{R}^2} \frac{e^{ix\cdot\xi} - 1}{\|\xi\|^{H+1}} d\widehat{W}(\xi),
$$

we can introduce anisotropy by restricted the frequency components of the spectral density $f^{1/2}(\xi) = c(\arg \xi) ||\xi||^{-H-1}$ into a cone in taking

$$
B^{H}{}_{\alpha_{0},\alpha}(x) = \int_{\mathbb{R}^{2}} (e^{ix\cdot\xi} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg\xi - \alpha_{0})}{\|\xi\|^{H+1}} d\widehat{W}(\xi)
$$

Figure 4: Elementary field $\alpha_0 = 0$, $H = 0.5$, $\alpha \in \{\frac{\pi}{6}\}$, $\frac{\pi}{24}$ }

TANGENT FIELD

$$
\frac{X(x_0 + \rho h) - X(x_0)}{\rho^H},
$$

admits a non-trivial limit in law Y_{x_0} as $\rho \to 0$. The field Y_{x_0} is then called the tangent field of X at x_0 . Roughly speaking, the random field X admits the tangent field Y_{x_0} at a given point x_0 if it **behaves locally as** Y_{x_0} when $x \to x_0$.

We can prove that the LAFBF X admits a tangent field Y_{x_0} at any point $x_0 \in \mathbb{R}^2$ defined as:

$$
Y_{x_0}(x) = \int_{\mathbb{R}^2} (e^{ix\xi} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \xi - \alpha_0(x_0))}{\|\xi\|^{H+1}} d\widehat{W}(\xi)
$$

KRIGING METHOD

$$
\hat{Z}(s_i) = a + \sum_{i \in \mathcal{V}(s_0)} \lambda_i Z(s_i) = a + \lambda^t \mathbf{Z}
$$

The aim is to find the weight λ_i for which :

$$
\bullet \ \mathbb{E}[\hat{Z}(s_0) - Z(s_0)] = 0
$$

• The variance $Var[Z]$ $\hat{\vec{Z}}$ $(s_0) - Z(s_0)$ is minimal