

TEXTURE MODELING BY GAUSSIAN FIELDS WITH PRESCRIBED LOCAL ORIENTATION

Kévin Polisano / <u>kevin.polisano@imag.fr</u>

joint work with

Marianne Clausel Valérie Perrier Laurent Condat

IEEE ICIP 2014 : International Conference on Image Processing. Lecture session CNIT Paris, October 27-30, 2014

Outline

Introduction

Motivation

General probabilistic framework

Our new stochastic model

- Definition: Locally Anisotropic Fractional Brownian Field
- Notion of tangent field
- Synthesis methods
 - Tangent field simulation by a turning bands method
 - LAFBF simulation via tangent field formulation
- Numerical experiments

Conclusion and future work

Randomness Self-similarity

Randomness Self-similarity

Randomness Self-similarity

 $\blacksquare B^H$ FBF with Hurst index 0 < H < 1 [Mandelbrot, Van Ness, 1968]

stationary increments : $B^{H}(\cdot + \mathbf{z}) - B^{H}(\mathbf{z}) \stackrel{\mathcal{L}}{=} B^{H}(\cdot) - B^{H}(0)$

self-similar :
$$B^H(\lambda \cdot) \stackrel{\mathcal{L}}{=} \lambda^H B^H(\cdot)$$

isotropic :
$$B^H \circ R_{\theta} \stackrel{\mathcal{L}}{=} B^H$$

The covariance is given by

$$Cov(B^{H}(\mathbf{x}), B^{H}(\mathbf{y})) = c_{H}(\|\mathbf{x}\|^{2H} + \|\mathbf{y}\|^{2H} - \|\mathbf{x} - \mathbf{y}\|^{2H})$$

Harmonizable representation

$$B^{\mathcal{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} rac{e^{i\mathbf{x}\cdot\boldsymbol{\xi}}-1}{\|\boldsymbol{\xi}\|^{\mathcal{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Harmonizable representation

$$B^{H}(\mathbf{x}) = \int_{\mathbb{R}^{2}} \frac{e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1}{\|\boldsymbol{\xi}\|^{H+1}} d\widehat{W}(\boldsymbol{\xi})$$

complex Brownian measure

Harmonizable representation

$$B^{H}(\mathbf{x}) = \int_{\mathbb{R}^{2}} \frac{e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1}{\|\boldsymbol{\xi}\|^{H+1}} d\widehat{W}(\boldsymbol{\xi})$$

roughness indicator complex Brownian measure

Harmonizable representation

Harmonizable representation

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

 $f^{1/2}(\mathbf{x}, \boldsymbol{\xi}) = c(\mathbf{x}, \boldsymbol{\xi}) \| \boldsymbol{\xi} \|^{-h(\mathbf{x}, \boldsymbol{\xi}) - 1}$

spectral density

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

• $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$

[Mandelbrot, Van Ness, 1968]

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^{H}$ [Mandelbrot, Van Ness, 1968] $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$

[Bierme, Richard, Moisan, 2012]

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ [Bierme, Richard, Moisan, 2012]

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ [Bierme, Richard, Moisan, 2012]

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$
 spectral density

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$ [Bierme, Richard, Moisan, 2012]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$ [Bierme, Richard, Moisan, 2012]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$
 spectral density

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$ [Bierme, Richard, Moisan, 2012]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$

anisotropic self-similar Gaussian fields

$$X(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) f^{1/2}(\mathbf{x},\boldsymbol{\xi}) d\widehat{W}(\boldsymbol{\xi})$$

$$f^{1/2}(\mathbf{x},\boldsymbol{\xi}) = c(\mathbf{x},\boldsymbol{\xi}) \|\boldsymbol{\xi}\|^{-h(\mathbf{x},\boldsymbol{\xi})-1}$$

 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv 1 \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv H \Rightarrow X = B^H$ [Mandelbrot, Van Ness, 1968]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\arg \boldsymbol{\xi}) \Rightarrow X = AFBF$ [Bonami, Estrade, 2003]
Example : elementary fields $c(\arg \boldsymbol{\xi}) = \mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0)$ $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$ [Bierme, Richard, Moisan, 2012]
 $c(\mathbf{x}, \boldsymbol{\xi}) \equiv c(\mathbf{x}, \arg \boldsymbol{\xi}) \text{ and } h(\mathbf{x}, \boldsymbol{\xi}) \equiv h(\mathbf{x})$

Locally Anisotropic Fractional Brownian Field (LAFBF)

Definition: Our new Gaussian model LAFBF is a local version of the elementary field

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

[Polisano et al.,2014]

$$\alpha = -\frac{\pi}{2}$$

 $\alpha = 0.6$

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Tangent field.

For a random field X locally asymptotically self-similar of order H,

$$\frac{X(\mathbf{x}_0 + \rho \mathbf{h}) - X(\mathbf{x}_0)}{\rho^H} \xrightarrow[\rho \to 0]{\mathcal{L}} Y_{\mathbf{x}_0}$$

$$Y_{\mathbf{x}_0}$$
 : tangent field of X at point $\mathbf{x}_0 \in \mathbb{R}^2$

[Benassi,1997] [Falconer,2002]

Taylor's expansion

Deterministic case

Stochastic case

Tangent field

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Tangent field.

For a random field X locally asymptotically self-similar of order H,

$$\frac{X(\mathbf{x}_0 + \rho \mathbf{h}) - X(\mathbf{x}_0)}{\rho^H} \xrightarrow[\rho \to 0]{\mathcal{L}} Y_{\mathbf{x}_0}$$

$$Y_{\mathbf{x}_0}$$
 : tangent field of X at point $\mathbf{x}_0 \in \mathbb{R}^2$

[Benassi,1997] [Falconer,2002]

Taylor's expansion

Deterministic case

Stochastic case

Tangent field

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Theorem. The LAFBF $B_{\alpha_0,\alpha}^H$ admits for tangent field $Y_{\mathbf{x}_0}$:

$$Y_{\mathbf{x}_{0}}(\mathbf{x}) = \int_{\mathbb{R}^{2}} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_{0}(\mathbf{x}_{0}))}{\|\boldsymbol{\xi}\|^{H+1}} d\widehat{W}(\boldsymbol{\xi})$$

• Y_{x_0} elementary field with global orientation $\alpha_0(x_0)$

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Theorem. The LAFBF $B_{\alpha_0,\alpha}^H$ admits for tangent field $Y_{\mathbf{x}_0}$:

$$Y_{\mathbf{x}_{0}}(\mathbf{x}) = \int_{\mathbb{R}^{2}} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbbm{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_{0}(\mathbf{x}_{0}))}{\|\boldsymbol{\xi}\|^{H+1}} d\widehat{W}(\boldsymbol{\xi})$$

constant

$$B_{\alpha_0,\alpha}^{\boldsymbol{H}}(\mathbf{x}) = \int_{\mathbb{R}^2} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_0(\mathbf{x}))}{\|\boldsymbol{\xi}\|^{\boldsymbol{H}+1}} d\widehat{W}(\boldsymbol{\xi})$$

Theorem. The LAFBF $B_{\alpha_0,\alpha}^H$ admits for tangent field $Y_{\mathbf{x}_0}$:

$$Y_{\mathbf{x}_{0}}(\mathbf{x}) = \int_{\mathbb{R}^{2}} (e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1) \frac{\mathbb{1}_{[-\alpha,\alpha]}(\arg \boldsymbol{\xi} - \alpha_{0}(\mathbf{x}_{0}))}{\|\boldsymbol{\xi}\|^{H+1}} d\widehat{W}(\boldsymbol{\xi})$$

constant
$$Y_{\mathbf{x}_{0}} elementary field with global orientation \alpha_{0}(\mathbf{x}_{0})$$

$$\Box \qquad B^{H}_{\alpha_{0},\alpha}(\mathbf{x}_{0}) \approx Y_{\mathbf{x}_{0}}(x = \mathbf{x}_{0})$$

$$\begin{split} v_{\mathbf{Y}_{\mathbf{x}_{0}}}(\mathbf{x}) &= \frac{1}{2} \int_{\mathbb{R}^{2}} |e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1|^{2} f(\mathbf{x}_{0},\boldsymbol{\xi}) d\boldsymbol{\xi} \\ &= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_{0},\alpha}(\mathbf{x}_{0},\theta) |\mathbf{x}\cdot\mathbf{u}(\theta)|^{2H} d\theta \\ &= \int_{-\pi/2}^{\pi/2} \tilde{v}_{\theta}(\mathbf{x}\cdot\mathbf{u}(\theta)) d\theta \end{split}$$

$$\tilde{v}_{\theta} = \frac{1}{2} \gamma(H) c_{\alpha_{0},\alpha}(\mathbf{x}_{0},\theta) |\cdot|^{2H}$$
$$\mathbf{u}(\theta) = (\cos \theta, \sin \theta)$$
$$\gamma(H) = \frac{\pi}{H\Gamma(2H)\sin(H\pi)}$$

$$v_{Y_{\mathbf{x}_{0}}}(\mathbf{x}) = \frac{1}{2} \int_{\mathbb{R}^{2}} |e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1|^{2} f(\mathbf{x}_{0},\boldsymbol{\xi}) d\boldsymbol{\xi}$$

in polar
coordinates
$$= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_{0},\alpha}(\mathbf{x}_{0},\theta) |\mathbf{x}\cdot\mathbf{u}(\theta)|^{2H} d\theta$$

$$variogram of a fractional
brownian motion (FBM) of order H
$$\tilde{v}_{\theta} = \frac{1}{2} \gamma(H) c_{\alpha_{0},\alpha}(\mathbf{x}_{0},\theta) |\cdot|^{2H}$$

$$\mathbf{u}(\theta) = (\cos\theta, \sin\theta)$$

$$\gamma(H) = \frac{\pi}{H\Gamma(2H)\sin(H\pi)}$$$$

$$v_{Y_{\mathbf{x}_{0}}}(\mathbf{x}) = \frac{1}{2} \int_{\mathbb{R}^{2}} |e^{i\mathbf{x}\cdot\boldsymbol{\xi}} - 1|^{2} f(\mathbf{x}_{0}, \boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$= \frac{1}{2} \gamma(H) \int_{-\pi/2}^{\pi/2} c_{\alpha_{0},\alpha}(\mathbf{x}_{0}, \theta) |\mathbf{x} \cdot \mathbf{u}(\theta)|^{2H} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \tilde{v}_{\theta}(\mathbf{x} \cdot \mathbf{u}(\theta)) d\theta \quad \text{variogram of a fractional brownian motion (FBM) of order H}$$

$$V_{\mathbf{x}_{0}} = \frac{1}{2} \gamma(H) c_{\alpha_{0},\alpha}(\mathbf{x}_{0}, \theta)| \cdot |^{2H}$$

$$\mathbf{u}(\theta) = (\cos \theta, \sin \theta)$$

$$\gamma(H) = \frac{\pi}{H\Gamma(2H) \sin(H\pi)}$$

Discrete formulation.

[Bierme, Richard, Moisan, 2012]

 $(\theta_i)_{1 \leq i \leq n}$ are *n* bands orientations and $\lambda_i = \theta_{i+1} - \theta_i$

The **turning band field** is defined as

$$Y_{\mathbf{x}_{0}}^{[n]}(\mathbf{x}) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^{n} \sqrt{\lambda_{i} c_{\alpha_{0},\alpha}(\mathbf{x}_{0},\theta_{i})} B_{i}^{H}(\mathbf{x} \cdot \mathbf{u}(\theta_{i}))$$

- B_i^H are *n* independent FBM of order *H*
- Good approximation provided max $\lambda_i \leq \varepsilon$

Discrete formulation.

[Bierme, Richard, Moisan, 2012]

 $(\theta_i)_{1 \leq i \leq n}$ are *n* bands orientations and $\lambda_i = \theta_{i+1} - \theta_i$

The **turning band field** is defined as

$$Y_{\mathbf{x}_0}^{[n]}(\mathbf{x}) = \gamma(H)^{\frac{1}{2}} \sum_{i=1}^n \sqrt{\lambda_i c_{\alpha_0,\alpha}(\mathbf{x}_0, \theta_i)} B_i^H(\mathbf{x} \cdot \mathbf{u}(\theta_i))$$

 B_i^H are *n* independent FBM of order *H*

Good approximation provided max $\lambda_i \leq \varepsilon$

Simulation along particular bands.

[Bierme, Richard, Moisan, 2012]

Discrete grid $r^{-1}\mathbb{Z}^2\cap [0,1]^2$ with $r=2^k-1,\,k\in\mathbb{N}^\star$

Choose (θ_i) such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max_i \lambda_i \leq \epsilon$

Then $B_i^H(\mathbf{x} \cdot \mathbf{u}(\theta_i))$ becomes

$$\begin{cases} B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right); 0 \leq k_1, k_2 \leq r \end{cases} \stackrel{\mathcal{L}}{=} \\ \left(\frac{\cos \theta_i}{rq_i} \right)^H \{ B_i^H (k_1q_i + k_2p_i); 0 \leq k_1, k_2 \leq r \} \end{cases}$$

Simulation along particular bands.

[Bierme, Richard, Moisan, 2012]

Discrete grid $r^{-1}\mathbb{Z}^2\cap [0,1]^2$ with $r=2^k-1,\,k\in\mathbb{N}^\star$

Choose (θ_i) such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max_i \lambda_i \leq \epsilon$

Then $B_i^H(\mathbf{x} \cdot \mathbf{u}(\theta_i))$ becomes Dynamic programming

$$\begin{cases} B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right); 0 \leq k_1, k_2 \leq r \end{cases} \stackrel{L}{=} \\ \left(\frac{\cos \theta_i}{rq_i} \right)^H \{ B_i^H (k_1q_i + k_2p_i); 0 \leq k_1, k_2 \leq r \} \end{cases}$$

Simulation along particular bands.

[Bierme, Richard, Moisan, 2012]

Discrete grid $r^{-1}\mathbb{Z}^2\cap [0,1]^2$ with $r=2^k-1$, $k\in\mathbb{N}^\star$

Choose (θ_i) such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max_i \lambda_i \leq \epsilon$

Then $B_i^H(\mathbf{x} \cdot \mathbf{u}(\theta_i))$ becomes Dynamic provides

Dynamic programming

self-similarity

$$\begin{cases} B_i^H \left(\frac{k_1}{r} \cos \theta_i + \frac{k_2}{r} \sin \theta_i \right); 0 \leq k_1, k_2 \leq r \end{cases} \stackrel{\mathcal{L}}{=} \\ \left(\frac{\cos \theta_i}{rq_i} \right)^H \left\{ B_i^H (k_1q_i + k_2p_i); 0 \leq k_1, k_2 \leq r \right\} \end{cases}$$

Simulation along particular bands.

[Bierme, Richard, Moisan, 2012]

Discrete grid $r^{-1}\mathbb{Z}^2\cap [0,1]^2$ with $r=2^k-1,\,k\in\mathbb{N}^\star$

Choose (θ_i) such that $\tan \theta_i = \frac{p_i}{q_i}$ and $\max_i \lambda_i \leq \epsilon$

Then $B_i^H(\mathbf{x} \cdot \mathbf{u}(\theta_i))$ becomes Dynamical

Dynamic programming

self-similarity

$$\begin{cases} B_{i}^{H}\left(\frac{k_{1}}{r}\cos\theta_{i}+\frac{k_{2}}{r}\sin\theta_{i}\right); 0 \leq k_{1}, k_{2} \leq r \end{cases} \stackrel{\mathcal{L}}{=} \\ \left(\frac{\cos\theta_{i}}{rq_{i}}\right)^{H}\left\{B_{i}^{H}\left(k_{1}q_{i}+k_{2}p_{i}\right); 0 \leq k_{1}, k_{2} \leq r \right\} \\ equispace \end{cases}$$

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Parametersr = 255H = 0.2 $\alpha = 10^{-1}$ $\epsilon = 10^{-2}$

$$\vec{V}_{(x,y)}^{1} = (\cos(-\pi/2 + y), \sin(-\pi/2))$$

Texture with prescribed local orientation at each point \mathbf{x}_0 given by a vector field $\vec{V}_{\mathbf{x}_0} = \mathbf{u}(\alpha_0(\mathbf{x}_0))$

Parametersr = 255H = 0.2 $\alpha = 10^{-1}$ $\epsilon = 10^{-2}$

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

Polisano et al. - Texture modeling by Gaussian field with prescribed local orientation

$$\vec{\mathbf{V}}_{(x,y)}^2 = (\cos(\cos(36xy)), \sin(\cos(36xy))) \qquad \vec{\mathbf{V}}_{(x,y)}^3 = \nabla F(x,y)$$

$$F(x, y) = (4x - 2)e^{-(4x-2)^2 - (4y-2)^2}$$

$$\vec{\mathbf{V}}_{(x,y)}^2 = (\cos(\cos(36xy)), \sin(\cos(36xy))) \qquad \vec{\mathbf{V}}_{(x,y)}^3 = \nabla F(x,y)$$

$$F(x, y) = (4x - 2)e^{-(4x-2)^2 - (4y-2)^2}$$

$$\vec{\mathbf{V}}_{(x,y)}^2 = (\cos(\cos(36xy)), \sin(\cos(36xy))) \qquad \vec{\mathbf{V}}_{(x,y)}^3 = \nabla F(x,y)$$

$$F(x, y) = (4x - 2)e^{-(4x-2)^2 - (4y-2)^2}$$

$$\vec{V}_{(x,y)}^1 = (\cos(-\pi/2 + y), \sin(-\pi/2))$$

H=0.5

$$\vec{V}_{(x,y)}^1 = (\cos(-\pi/2 + y), \sin(-\pi/2))$$

$$\vec{V}_{(x,y)}^1 = (\cos(-\pi/2 + y), \sin(-\pi/2))$$

Conclusion

Introduce a **new stochastic model**

defined as a local version of an AFBF.

Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Simulations based on tangent field formulation and the turning bands method produce textures with prescribed local orientations.

Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Simulations based on tangent field formulation and the turning bands method produce textures with prescribed local orientations.

Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Simulations based on tangent field formulation and the turning bands method produce textures with prescribed local orientations.

Future work

Extensions of our model include Hurst index may vary spatially.

Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Simulations based on tangent field formulation and the turning bands method produce textures with prescribed local orientations.

Future work

Extensions of our model include Hurst index may vary spatially.

Conclusion

Introduce a new stochastic model defined as a local version of an AFBF.
Simulations based on tangent field formulation and the turning bands method produce textures with prescribed local orientations.

Future work

Extensions of our model include Hurst index may vary spatially.

Bibliography

Selected papers

- K. Polisano, M. Clausel, V. Perrier and L. Condat, "Texture modeling by Gaussian fields with prescribed local orientation", *IEEE ICIP*, 2014.
- A. Bonami and A. Estrade, "Anisotropic analysis of some Gaussian models", Journal of Fourier Analysis and Applications, vol. 9, no. 3, pp. 215–236, 2003.
- H. Bierme, L. Moisan, and F. Richard, "A turning-band method for the simulation of anisotropic fractional Brownian fields," *preprint MAP5 No. 2012-312012*, 2012.
- K.J. Falconer, "Tangent fields and the local structure of random fields," *Journal of Theoretical Probability*, vol. 15, no. 3, pp. 731–750, 2002.

Questions ?

Questions ?

Thank you for your attention.

Dynamic programming. The choice of the bands orientation $(\theta_i)_{1 \le i \le n}$

is governed by the computational cost of the B_i^H is within dynamic programming.

Let the error ϵ fixed. Taking $N = \lceil \frac{1}{\tan \epsilon} \rceil$ consider the following set:

$$\mathcal{V}_N = \left\{ (p,q) \in \mathbb{Z}^2 / -N \leqslant p \leqslant N, 1 \leqslant q \leqslant N, p \land q = 1, -\frac{\pi}{2} < \arctan\left(\frac{p}{q}\right) < \frac{\pi}{2} \right\}$$

The aim is to find n pairs in the set \mathcal{V}_N which minimize the following global cost:

$$C(\Theta) = \sum_{k=1}^{s} C(r(|p_{i_k}| + q_{i_k}))$$

where $C(\ell)$ is the cost of one FBM B_i^H in $O(n \log n)$, under the constraint $\max_i (\theta_{i+1} - \theta_i) \leq \epsilon$