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Wavelet zoom
a local characterization of functions
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Local characterization of regularity via the derivatives

"Smoothness" depends on the differentiability class to which a function
belongs to. Among these 4 continuous (C°) functions:

° is the only one and C*®
@ x — |x| is not differentiable at x = 0 (corner)

® x — +/|x| (cusp) and ( ) have kind of "infinite gradient"
at the singularity point x =0

N
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Prerequisite: Global regularity through Fourier coefficients

Lemma (Riemann-Lebesgue)

If fis L' then the Fourier transform of f satisfies

= / f(x)e ¥ ——0
|w|—00

How fast the Fourier coefficients decrease?

For f p tlmes continuously differentiable with bounded derlvatlves since

flw) = Ld f( ) then by iterating we get f(w) = (,.j)p d‘fp f(w)
K
<
s

—

with K = sup %f
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Prerequisite: Global regularity through Fourier coefficients

Conversely does the Fourier decay governs smoothness?
If  is L1 then f € L and f is continuous.

Proof:
Fl< 177 /| iwx?(w)\d S 177 /ﬁ(w)’dw < 400
x)|< 5 e w < > +

which proves boundedness. As for continuity, consider a sequence

Yn — 0 and
1 . N
f(x—yn) = 5 /e’“’(x_y")f(w) dw
The integrand converges pointwise to ei"“’x?(w) and is uniformly bounded
in modulus by the integrable function f. Hence Lebesgue's dominated
convergence theorem applies and yields f(x — y,) — f(x) that is

continuity in x. O
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Prerequisite: Global regularity through Fourier coefficients

Theorem (Sufficiant condition for differentiability of f at order p)

A function f is bounded and p times continuously differentiable with
bounded derivatives if

/ | \?(w)](l + |w|P)dw < 400

J =00

—

Proof: Knowing that f(K) : w i (iw)*f(w), by the inversion formula
1700 (1) = ’/ @(w)efwtdw‘ < [T F@)Heldo < +oo
for any k < p, so (k) is continuous and bounded. O

Corrolary. If it exists a constant K and € > 0 such that

‘f((JJ)|< W’ then f e(CP

Credits: S. Mallat (Wavelet tour)
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Prerequisite: Global regularity through Fourier coefficients

The decay of \/f\(w)| depends on the worst singular behavior of f

—1if —7<x<0 _+oo 4 )
f(X)_{+1if0<X<7T —;msm(Qn—l)x)

where f is periodized. For f = 1j_1 7] = [ (w)|= o(|lw|™1)

Credits: Wikipedia (https://en.wikipedia.org/wiki/Fourier_series)
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Wavelet zoom: Lipschitz regularity

Definition (Lipschitz regularity of order «v of a function f)

Let @ > 0 be the regularity parameter and xg € R.
f is pointwise Lipschitz—a at xg, if there exist C > 0 and a polynomial
P, of degree n = ||, such that

VheR, [f(xo+h) = Pa(h)[< Clh[* (1)
P, is the Taylor expansion of f at xp. (If 0 < a < 1, P,(h) = f(x0))

e f is uniformly Lipschitz—a over [a, b] if f satisfies (1) for all
xo € [a, b], with a constant C independent of xp.

@ Extension to negative « (distributions): f uniformly Lipschitz—«
over |a, b[ if its primitive is Lipschitz—(a + 1) over ]a, b|.

@ The Lipschitz regularity of f is the supremum of the « such that f
is Lipschitz—a.
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Lipschitz—« functions

VheR, |f(x+ h)— f(x0)|< C|h|®

T
Figure: The schematic diagram of Lipschitz—a functions

Credits: Li-Wei Liu & Hong-Ki Hong
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Some examples

@ A Lipschitz—a function at xp, with 0 < a < 1, is continuous, but a
priori non differentiable.

A C? function in a neighborhood of xg is Lipschitz—-1 at xg.

The Lipschitz regularity a with n < o < n+ 1 allows to classify
regularities between C" and C"™1.

@ A bounded function is Lipschitz—0. For example the Heavyside
function H(x) =1if x >0 and 0 if x < 0.

The distribution ¢ is Lipschitz—(—1) (as the derivative of H).
The function x — |x — xp|* (0 < aw < 1) is Lipschitz—a
The function x +— +/|cos(27x)] is Lipschitz—%.

f(@)
2
1
0

(]

0 0.2 0.4 0.6 0.8 1
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Some examples

A Holder function of exponant %

fonction a analyser
1 T T T

0.6

02r-

0 I I I I I I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

coefficients d ondelettes

100 200 800 400 500 600 700 800 900 1000
Figure: f(x) = y/|cos(27x)| and its CWT (modulus, Morlet wavelet, divided by /a)
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Some examples
f(x)

0 0.2 0.4 0.6 0.8 1 b

Figure: Wavelet transform Wf(a, b) calculated with ) = —6’ where 0 is a Gaussian
Singularities create large amplitude coefficients in their cone influence.

Credits: S. Mallat (Wavelet tour)
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Regularity measurements with wavelets

Let @ > 0 be fixed, ¢ a wavelet with compact support C [—L, L], and
N > « vanishing moments:

/x”z/)(x) dx =0, for0<n<N
Remark: a wavelet with N vanishing moments is orthogonal to
polynomials of degree N — 1.
Polynomial Suppression. Let f Lipschitz-a at xg, that is
f(x) = Pa(x —x0) +e(x —x0) with |e(x — x0)|< |x — xo|@

Since @ < N, the polynomial Py has degree at most N — 1.
With the change of variable y = (x — b)/a, we verify that

WP,(a, b) = /;OO P,,(x)\}gﬂ) <X - b) dx =0

Then,
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Pointwise Lipschitz regularity and wavelet coefficients

Let o > 0. One consider a wavelet 9 of regularity CV, with compact
support supp ¥ C [—L, L], and N > « vanishing moments.

Theorem (Jaffard, Estimation of the local regularity of f at point
X())
If f € L?(R) is Lipschitz—a < N at xp, then 3A > 0 such that

b*XO

)

Conversely, if a < N is not an integer and there exist A > 0 and o/ < «
such that
o/)

V(a,b) e R x RT, |Wf(a,b)|< A 2™tz (1 + '

a

b —
V(a,b) € R x RY, |Wf(a,b)|< A a2 <1 - ‘ 0

then f is Lipschitz-a at xp.
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Proof of
Since f is Lipschitz—« at xg, there exists a polynomial Py of degree
o] < N and C > 0 such that

[f(x) — Pn(x — x0)|< Clx — xo[”

Since ¢ has N vanishing moments, we saw that WP,(a, b) = 0, and thus

|WF(a, b)] ‘/ — Pn(x — x0)] tha,p(x) dx

/ C‘X*XO'“% o (57)]

The change of variable y = *=2 gives

X

[WE(a, b)|< V3 / Clay + b= xo|w(y)ldy
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Proof of

W(a,B)I< Va [ Clay +b—x " [w(y)ldy
—00 =~ =

t s

Lemma: |t + s|*< 2%(|t|*+]s|¥)

Proof: Let m = max(|t|,|s|) so that |t + s|< [t|+|s|< 2m. Then,
£+ 5% (2m)® = 27m® < 2°(|e7+[s]°)

By the lemma,

Wra.b) < €2V (s [ Ileldy +1b -l [

— o0
b— xgl|®

———

A

with M = max (/% ly[*[0 ()], [ l(y)ldy). O

w0y

< KM 50+ 3 (1 + ‘

a
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Cone of Influence

If supp ¢ = [—L, L], the cone of influence of xp in the time-scale space
is the set of points such that xp € supp ¥, = [b — La, b+ La], that is

M(x0) = {(b,a) e R xRY : |b—xp|< La}
If £ is Lipschitz-a at xg, then 3A > 0, such that for all (b, a) € I'(xp):
|WF(a, b)|< A a2
and conversely for a non integer.

« is computed by the slope of the curve log a — log|Wf(a, b)|

échelle Chaine de
a maxima d’ondelettes

/

!
Xy Position
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Wavelet Transform Modulus Maxima

References
e S. Mallat, W.L. Hwang Singularity detection and processing with
wavelet, IEEE Trans. Info. Theory, 38(2):617-643, Mars 1992

@ S. Mallat, S.Zhong Characterization of Signals from Multiscale
Edges, IEEE Trans. Patt. Anal. and Mach. Intell., 14(7):710-732,
Juillet 1992
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Wavelet construction from the derivatives of a Gaussian

Let 6(x) = exp(—x?/0?) the Gaussian Kernel and let considered

PN (x) = 00" (x) = ((fx)lve 2

The wavelet )V has N vanishing moments.

A
N

0.4 ~

Figure: The Gaussian 6 (n = 0) for o = 1 and its two first derivatives:
n=1is represented in (— - —) and n =2 (the Mexican hat) in (- - -)
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Multiscale differential operator

A wavelet 1) has fast decay if

Cm
Vm e N, HCm such that |'¢(X)|< m, Vx € R

Theorem (Multiscale differential operator)

A wavelet 1 with fast decay has N vanishing moments if and only if
there exists 6 with a fast decay such that

, o NdNe
v = ()" o
AS a Consequence
Waf(ab) = M0 i)
NIRE D)= 9 N

Moreover, 1) has no more vanishing moments iff [ # 0.
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Multiscale differential operator
Sketch of the proof

Notice that:

Vk < N, /'xw(x)dx — (Y DP0) = 0 = D(w) = (—iw)Vd(w)

v

With L(x) = —% one has 0, = =6 o L and

Vva
\/E%éa(x) = L) (L(x)) = 0 <_X>
By iterating:

et~ S ()" 80 () - () 500

Finally, commuting the convolution and differentiation operators yields

v anv . an "
Wi (a, b) = (f*¢a(x))(b) = <f*d,v 0 ) (b)=aN[ (f*ea)] (b)
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Multiscale differential operator

Consequences

Since 0 has fast decay, one can verify that

I, 75 = K0
Hence: 1
lim 6= =0a(b) = Ko(b)

If fis N times continuously differentiable in the neighborhood of u:

limy oz = Nmy P 20a(b) = KFTE(b)

In particular if f is CV with bounded N th-order derivative

|Wf(a, b)|= O(a"*/?)

Kévin Polisano Wavelets and Applications
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Multiscale differential operator

Example

@ The convolution f x 6,
averages f over a domain
proportional to a f(t)

o If the wavelet has only one
vanishing moment: ) = —0
then Wi(a, b) = ah(f * 0,)(b)
has modulus maxima at sharp
variation points of f % g,

s o %
o If the wavelet has two vanishing /N/\
moment: ) = —6” then W, f(u,s) ‘ L u

/

Wa(a, b) = a5 (f % 0,)(b) |
corresponds to locally 1

maximum curvatures

Kévin Polisano Wavelets and Applications



Wavelet Maxima Lines

e Point of Modulus Maximum are any point (bg, ap) in the time-scale
plan such that the curve b — |Wf(b, ap)| is locally maximum at
b = by. This implies that

OWf(ao, bo) —0

ob a

e Maxima lines is any connected curve a(b) in the scale-space plane
(b, a) along which all points are modulus maxima.

Theorem (Hwang, Mallat)

Suppose that v is CN with a compact support and ¢ = (—1)N9(N) with
[0 #0. Let f € LY[bg, b1]. If there exists ag > 0 such that |Wf(a, b)|
has no local maximum for b € [bg, b1] and a < ag, then f is uniformly
Lipschitz—N on [bg + €, b1 — €], for any € > 0.
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Wavelet Maxima Lines

Remarks

@ This theorem implies that f can be singular (not Lipschitz-1) at a
point xg only if there is a sequence of wavelet maxima points
(bk, ak)ken that converges toward xp at fine scales:

lim by =xp and lim a,=0
k——+o00 k——+o0
@ These modulus maxima points may or may not be along the same
maxima line. This result guarantees that all singularities are

detected by following the wavelet transform modulus maxima at
fine scales

Theorem (Hummel, Poggio, Yuille)

Let ¢p = (—1)VO(N) where 6 is Gaussian. For any f € L2, the modulus
maxima of Wf(a, b) belongs to connected curves that are never
interrupted when the scale decreases
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Wavelet Maxima Lines

Example

log2(scale)
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Example: a simple Dirac o

representation temporelle

1 250
0.8 200
0.6 150
\l
0.4 100 /
0.2 50 i
| /
0
0 0.2 0.4 0.6 0.8 1 200 400 600 800 1000
(a) Le Dirac (b) les coefficients d’ondelettes
Chainage des maxima chaine 1:
0 -8.8
1
1 -9
5 -9.2
82
)
N -9.4
{2
o 3 3
' i / -9.6
4 1/ 98
5 \ / -10
0 0.2 0.4 0.6 0.8 1 3 3.5 4 4.5 5
(c) chainage (d)  évaluation de la singularité en 0.5
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Example: 2 cusps f(x) = |x — 0.25|3+|x — 0.7|3

representation temporelle

1.5 250
200 / { m
150 \/
1
100
50
0.5
0 0.2 0.4 0.6 0.8 1 200 400 600 800 1000
(a) La fonction (b) les coefficients d’ondelettes
Chainage des maxima chaine 2 et 3:
ot 2 -4
.
2 -5
1 J’
o) | -6
82
& || -7
{2
£ 3
' -8
4 -9
|
5 -10
0 0.2 0.4 0.6 0.8 1 0 1
(c) chainage (d) évaluation de la singularité en 0.7 (trait continu)

et 0.25 (trait pointillé)
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Example: f(x) = |x — 0.25|:4|x — 0.7|34noise (SNR=0.01)

representation temporelle

0.5

0.2 0.4 0.6 0.8
(a) La fonction

Chainage des maxima

250 \S
200
150
100
50
1 200 400 600 800 1000

(b) les coefficients d’ondelettes

chaine 2 et 3:

—log2(scale)

02 04 06 08

(c) chaina{ge

Kévin Polisano Wavelets and Applicatio

1 0 1 2 3 4 5
(d) évaluation de la singularité en 0.7 (trait continu)
et 0.25 (trait pointillé)
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Practical estimation of «

f is uniformly Lipschitz—a in the neighborhood of xg iff there exists
A > 0 such that each modulus maximum (b, a) in the cone satisfies

|WF(a, b)|< Aa™tz
which is equivalent to

1
log,| Wi (a, b)|< logy A + (a + 2) log,a

= The Lipschitz regularity at xp is the maximum slope of log,|Wf(a, b)|
as a function of log,a along the maxima lines converging to xg
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Practical estimation of «

Example

log2lWi(u,s)!
-3

-4

log2(scale)

-7 loga(s)

Figure: The full line gives the decay along the maxima line that converges to
the first jump, and the dashed line to the first cusp.
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Properties

@ Independants
o displacements

@ Gaussian distribution

@ lIrregular trajectories
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

Independants displacements

Irregular trajectories

Gaussian distribution
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

(Ax)? x t
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Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

Brownian motion
@ (B:)+ has independants /AN Y

_ 2 N )
increments, By = 0 a.s. 3 L
[ \TY/’(”] X, (ws)

® By, — By ~N(0,t; — t;) 5
@ (B:)+ has continuous sample I ,
paths a.s. T ./ o

(Ax)? < t

Kévin Polisano Wavelets and Applications



Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Esl -ade
1828 1905 1923 1940 1968 1995

> Construction of Brownian motion

Isometry W : (L2, (f, g),2) = (G,E[XY])
o EW(NW(g)l = (f, )12, W(F) ~N(O,[|f]|}2)

def
:/]l[s,t] =t—s

o Vte[0,1], B:= W(lpy)
2
E[(B: — Bs)’] = H]l[&t] s
E [(Bt,- - Bt,-—l)(Btj - Btj—l)] = <]]-[t,-_1,t,-]a ]l[tj_l,tj]>L2 =0

Wiener stochastic integral = /f(X)W(dx)
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995

Self-similarity
{X(t)}teT self-similar of order H if

VA € R AXOD ey A X (D)} ey
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Self-similarity

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

Self-similarity
{X(t)}teT self-similar of order H if

VA € R AXOD) ey M X (D)} ey
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Self-similarity

Brown Einstein Wiener Kolmogorov
1828 1905 1923 1940

Self-similarity
{X(t)}teT self-similar of order H if

Y\ eR, {X()‘t)}tET 1) /\H X(O)} et

Kévin Polisano

Mandelbrot Kamont Bonaml Eslrade
1968 1995

Wavelets and Applications
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E [(BH(t) — BH(5))2] = |t — s]*" = independant-increments

H=0.2 H=05 H=0.38

Figure: Fractional Brownian motion B"
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E [(B(t) - B(s))?| = |t - 5"

H=02 H=05 H=0.38
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonaml Eslrade
1828 1905 1923 1940 1968 1995

E [(B(t) - BM(s))?| = |t — s =
o R(t,s) = Cov(B"(t), BM(s)) = 3(t?" + s?H — |t — s]*")

H=02 H=05 H=0.38
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Fractional Brownian motion

Brown Einstein Wiener Kolmogorov  Mandelbrot Kamont Bonaml Esl ade
1828 1905 1923 1940 1968 1995

E [(B(t) - BM(s))?| = |t — s =
o R(t,s) = COV(BH( t), BM(s)) = 3(t" + s?" — |t — s|?")

t€
e BH(t) = o fR ijH/le(ﬁ) =

H=02 H=05 H=0.38
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Fractional Brownian field

Brown Einstein Wiener Kolmogorov Mandelbrot Kamont Bonami-Estrade
1828 1905 1923 1940 1968 1995 2003

o E|(B(x) - B())?] = IIx — yI*", x,ye R?
o R(x,y) = (x [2M+[ly 1%~ [lx — y %)

(X €) 1 __
0 B10x) = o [ S W(ae)

€117+

Gy

H=02 H=05 H=028
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Wavelet-based estimation of the Hurst exponent

@ Let us consider a discrete wavelet transform at scales a = 277/ and
positions b = k

i k(x) = 2792927 x — k)
which encodes series information in details
djk = (B, ¥j k)
o Compute wavelet variance

1
Var(dj.) = ~ Z |dj,k|2

@ Plot the log, of variances versus scale j

log,(Var(d;e)) = (2H + 1) + cste
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Wavelet Maxima Lines for Brownian motion

(@) D(a)

4

3 1

2 09

1 0.8

0

0.7

b q o

£ 2 4 0.65 0.7 075 (d)

Credits: S. Mallat (Wavelet tour)
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Take home message

@ Vanishing moments up to order N make the wavelet ¢ blind to
polynomial of degree < N (smooth part of the signal), leading to
better detections of singularities

o If the function is Lipschitz—a, then the amplitude of the wavelet

coefficients are going to decay very fast to zero when the scale goes
to zero (all the more that « is high)

@ A remarkable aspect is the reverse: if we know this property, then
we can characterize the pointwise regularity of the function at any
point

@ All singularities are detected by following the wavelet transform
modulus maxima at fine scale

@ The Lipschitz regularity at every point can be retrieved by
measuring the maximum slop of the decay of log,|Wf(a, b)|

@ The wavelet-based estimation of the Lipschitz regularity enables to
recover the self-similarity exponent of fractals
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