
Wavelets and Applications

Kévin Polisano
kevin.polisano@univ-grenoble-alpes.fr

https://polisano.pages.math.cnrs.fr/

M2 MSIAM & Ensimag 3A MMIS

October 16, 2023

Kévin Polisano Wavelets and Applications 1/43

mailto:kevin.polisano@univ-grenoble-alpes.fr
https://polisano.pages.math.cnrs.fr/
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Kévin Polisano Wavelets and Applications 2/43



Bidimensional Continuous Wavelet Transform
1 2D Wavelets
2 Directional Continuous Wavelet Transform, inversion formula
3 Isotropic Wavelet Transform
4 A wavelet for image analysis: the "Canny" wavelets

Kévin Polisano Wavelets and Applications 3/43



2D Fourier Transform
The bidimensional Fourier transform of a function f integrable on R2 is
defined by:

f̂ (k) =
∫∫

R2
f (x) e−2iπk·x dx, ∀k ∈ R2

If f ∈ L2(R2), the inversion formula is given by:

f (x) =
∫∫

R2
f̂ (k) e2iπk·x dk

and the energy conservation writes:∫∫
R2

|f (x)|2dx =
∫∫

R2
|f̂ (k)|2dk
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2D Fourier Transform
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Definition of 2D wavelets
ψ ∈ L1(R2) ∩ L2(R2) is a wavelet if it satisfies the admissibility condition:

cψ =
∫∫

R2

|ψ̂(k)|2
∥k∥2 dk < +∞

which implies (and is equivalent provided ψ has sufficient decay at
infinity): ∫∫

R2
ψ(x) dx = 0

In practice, one usually needs that ψ has p vanishing moments:∫∫
R2

xα1
1 xα2

2 ψ(x1, x2) dx1 dx2 = 0, ∀α1, α2 ∈ N s.t. α1 + α2 ≤ p − 1

Remark: this means that the Fourier transform of the wavelet should
behave as ∥k∥p when k → 0 in Fourier domain.
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2D Wavelet family
Let ψ(x) be an admissible wavelet. The wavelet family is defined by
dilation, rotation, and translation from ψ:

ψ(a,b,θ)(x) = 1
aψ

(
R−θ

(x − b
a

))
with b ∈ R2 the translation parameter, a the positive scale and R−θ the
rotation of angle θ in R2, corresponding to matrix

R−θ =
(

cos θ sin θ
− sin θ cos θ

)

Example (Anisotropic Morlet Wavelet)
Let u = (cosα, sinα) the unitary vector of direction α.
The (complex) Morlet wavelet is:

ψ(x) = e−π∥x∥2e10iπx·u
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Isotropic wavelets

Example (Iterated Laplacian of Gaussian)
For n ≥ 1, the wavelet h2n is defined by:

h2n(x) = (−1)n
(
∂2

∂x2 + ∂2

∂y2

)n

e−π∥x∥2

Its Fourier transform is given by:

ĥ2n(k) = 4nπ2n ∥k∥2ne−π∥k∥2

For n = 2, h2 is the Laplacian of Gaussian, popular in computer vision,
also called the Mexican hat.

Remark: the wavelet h2n has exactly 2n vanishing moments. The
maximum of its Fourier transform ĥ2n is achieved for k0 =

√
2n.
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Isotropic wavelets

Example (Iterated Laplacian of Gaussian)
Wavelet h2(x , y) (Mexican hat) and 1D section:
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2D directional continuous wavelet transform
Let ψ be a 2D wavelet.

The directional wavelet transform of a given function f ∈ L2(R2) is
defined by:

Wf (a,b, θ) =
∫∫

R2
f (x)ψ(a,b,θ)(x) dx

= 1
a

∫∫
R2

f (x)ψ
(

R−θ

(x − b
a

))
dx

Applying Parseval formula, it writes:

Wf (a,b, θ) = a
∫∫

R2
f̂ (k) ψ̂(a R−θk)e2iπk·b dk
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Inversion formula
The function f can be reconstructed by:

f (x) = 1
cψ

∫ +∞

0

∫ 2π

0

∫∫
R2

Wf (a,b, θ)ψ(a,b,θ)(x) da
a3 dθ db

with
cψ =

∫∫
R2

|ψ̂(k)|2
∥k∥2 dk

The energy conservation writes:∫∫
R2

|f (x)|2dx = 1
cψ

∫ +∞

0

∫ 2π

0

∫∫
R2

|Wf (a,b, θ)|2 da
a3 dθ db
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Inversion formula with a different wavelet
Let f (x) ∈ L2(R2).

Wavelet decomposition of f (x) with an analysing wavelet g :

Wg f (a,b, θ) =
∫∫

R2
f (x) 1

a ḡ
(

R−θ

(x − b
a

))
dx

Synthesis with a reconstruction wavelet h:

f (x) = 1
cgh

∫ +∞

0

∫ 2π

0

∫∫
R2

Wg f (a,b, θ) 1
ah
(

R−θ

(x − b
a

)) da
a3 dθ db

Cross admissibility condition on functions g , h ∈ L2(R2):

cgh =
∫∫

R2

¯̂g(k)ĥ(k)
∥k∥2 dk < +∞
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Classical examples

Wavelet constructed from the Gaussian G(x) = e−π∥x∥2

Wavelet transform with an isotropic wavelet
g(x) = h(x) = ∆G(x) (Mexican hat)
g(x) = G(x) (g is not a wavelet) and h(x) = ∆G(x)

−5

0

5

−5

0

5

0

0.2

0.4

0.6

0.8

1

−5

0

5

−5

0

5

−0.5

0

0.5

1

1.5

2

Wavelet transform with a vector wavelet g(x) = ∇G(x)
(Canny multi-scale detector)
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Isotropic Wavelet Transform
When the wavelet is real, isotropic (i.e rotation invariant
ψ(x) = h(∥x∥)), the wavelet transform of f comes down:

Wf (a,b) = 1
a

∫∫
R2

f (x)ψ
(x − b

a

)
dx

⇒ the integral on θ disappears

From Parseval equality, it writes:

Wf (a,b) = a
∫∫

R2
f̂ (k) ψ̂(ak)e2iπk·b dk

⇒ the wavelet transform acts as a filter on the Fourier transform of f
around the frequency k0

a .
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Isotropic Wavelet Transform
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If ψ is admissible, one has the energy conservation:∫∫
R2

|f (x)|2dx = 1
cψ

∫ +∞

0

∫∫
R2

|Wf (a,b)|2 da
a3 db

and the synthesis formula:

f (x) = 1
cψ

∫ +∞

0

∫∫
R2

Wf (a,b)ψa,b(x) da
a3 db

Kévin Polisano Wavelets and Applications 15/43



The Canny multiscale detector for image processing
Let Θ be a smoothing kernel such that:∫∫

R2 Θ = 1
Θ ≥ 0
Θ isotropic or Θ(x , y) = Θ1(x)Θ2(y)

Example (Gaussian)
Θ(x) = G(x) = e−π∥x∥2 a smoothing kernel isotropic and tensorial

Directional Wavelets

Ψ(x) = ∇Θ(x) = (ψ1, ψ2)

ψ1 = − ∂Θ
∂x1

and ψ2 = − ∂Θ
∂x2

Wavelets in the direction φ ⇒ ψφ = cosφ ∂G
∂x1

+ sinφ ∂G
∂x2

= φ⃗ · ∇G
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The Canny multiscale detector for image processing
Decomposition: computation of the vector wavelet transform

W f (a,b) = (W 1f (a,b),W 2f (a,b))

W 1f (a,b) =
∫∫

R2
f (x)1

aψ
1
(x − b

a

)
dx → vertical singularities

W 2f (a,b) =
∫∫

R2
f (x)1

aψ
2
(x − b

a

)
dx → horizontal singularities

Interpretation:

W f (a,b) = a ∇
(

f ∗ 1
a Θ̌

(x
a

))
(b)

W f represents the gradient of the image, smoothed by Θ at scale a
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Proof: Let define L(x) = −x
a , Θ̌a = 1

a Θ ◦ L, ψ̌k
a (x) = 1

aψ
k (−x

a
)
.

W k f (a,b) =
∫∫

R2
f (x)1

aψ
k
(x − b

a

)
dx = (f ∗ ψ̌k

a )(b)

By the chain rule ∂
∂xk

(Θ ◦ L)(x) = ∂Θ
∂xk

(L(x)) ∂L
∂xk

(x) hence

ψ̌k
a (x) = −1

a
∂Θ
∂xk

(
−x

a

)
= a ∂

∂xk

(1
aΘ ◦ L

)
(x) = a∂Θ̌a

∂xk

(f ∗ ψ̌k
a )(b) = a

∫∫
f (x)∂Θ̌a

∂xk
(b − x) dx

= ∂

∂bk

∫∫
f (x)Θ̌a(b − x) dx

= ∂

∂bk
(f ∗ Θ̌a)(b)

(
W 1f (a,b)
W 2f (a,b)

)
= a

(
∂
∂b1

(f ∗ Θ̌a)(b)
∂
∂b2

(f ∗ Θ̌a)(b)

)
= a∇(f ∗ Θ̌a)(b) □
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Multiscale detector and directional wavelet transform
If Θ is isotropic, one has ∂Θ

∂x1
(R−θx) = cos θ ∂Θ

∂x1
(x) + sin θ ∂Θ

∂x2
(x)

Then,

Wψ1f (a,b, φ) = φ⃗ · W f (a,b) → singularities in the direction φ⃗⊥

where Wψ1f is the directional wavelet transform of f with ψ1 as
analyzing wavelet.

One can write:(
Wψ1f (a,b, φ)
Wψ2f (a,b, φ)

)
=
(

cosφ sinφ
− sinφ cosφ

)(
W 1f (a,b)
W 2f (a,b)

)

In vector formulation:
W ∇Θ = R−φW

⇝ will provide a reconstruction formula for the multiscale detector!
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Inversion of the multiscale detector (Le Cadet, PhD 2004)

f (x) = π

Cψ1

∫
a>0

da
a3

∫∫
R2

W f (a,b) ·ψa,b(x) db

with Cψ1 = π2 for Θ = G .

Proof: The reconstruction formula of the directional wavelet transform
with wavelet ψ1 gives:

f (x) = 1
Cψ1

∫ 2π

0

∫ +∞

0

∫∫
R2

Wψ1f (a,b, θ)1
aψ

1
(

R−θ
(x − b

a

))
dθda

a3 db

Replacing Wψ1f (a,b, θ) by its definition:
f (x)

= 1
Cψ1

∫ 2π

0

∫ +∞

0

∫∫
R2

[
cos θW 1f (a,b) + sin θW 2f (a,b)

]
1
a
∂Θ
∂x1

(
R−θ

(x − b
a

))
dθda

a3 db
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If Θ is isotropic, one has:

∂Θ
∂x1

(R−θx) = cos θ ∂Θ
∂x1

(x) + sin θ ∂Θ
∂x2

(x)

then

f (x)Cψ1 =
∫

a>0
da
a3
∫∫
R2 db

∫ 2π
0 dθ cos2 θW 1f (a,b) 1

a
∂Θ
∂x1

(x−b
a )

+
∫

a>0
da
a3
∫∫
R2 db

∫ 2π
0 dθ sin2 θW 2f (a,b) 1

a
∂Θ
∂x2

(x−b
a )

+
∫

a>0
da
a3
∫∫
R2 db

∫ 2π
0 dθ cos θ sin θW 1f (a,b) 1

a
∂Θ
∂x2

(x−b
a )

+
∫

a>0
da
a3
∫∫
R2 db

∫ 2π
0 dθ cos θ sin θ W 2f (a,b) 1

a
∂Θ
∂x1

(x−b
a )

Since
∫ 2π

0 cos2 θ dθ =
∫ 2π

0 sin2 θ dθ = π and
∫ 2π

0 cos θ sin θ dθ = 0 then

f (x) = π

Cψ1

∫
a>0

da
a3

∫∫
R2

db
[
W 1f (a,b)ψ1

a,b(x) + W 2f (a,b)ψ2
a,b(x)

]
□
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Energy conservation formula
The vector W f (a,b) should be represented in modulus-orientation:

Mf (a,b) = ∥W f (a,b)∥ Modulus
Af (a,b) = Arg (W f (a,b)) Orientation

The energy conservation (with an isotropic kernel Θ) writes:∫∫
R2

|f (x)|2dx = π

Cψ

∫
a>0

da
a3

∫∫
R2

(Mf (a,b))2 db

Example (Application: edge detection in 2D images)
1 Edge points at scale a are points where b 7→ Mf (a,b) is locally

maximum in the direction Af (a,b).
2 Estimation of the maxima lines linking edge points through scales a.

The tops of these maxima lines (a → 0) finally constitute the edge
points of the image.

3 Computation of the Lipschitz regularity at any edge point.
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Application: edge detection in 2D images
Detection and classification of edges of a regular image, regular outside
regular singularity lines.

I

I

I

I

The edge is characterized by
a singularity in the intensity,
in the direction of the gradient ∇⃗I.
Along the edge, i.e. in the
orthogonal direction of the gradient,
the regularity is maximal

Remark: In pratice one will consider ∇(I ∗ 1
a2 G( x

a )), which correspond
to wavelet coefficients of I with a wavelet Gaussian gradient.
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Application: edge detection in 2D images

Edge Model (Canny 86)
A point (x0, y0) of an image is an edge point if at this point the gradient
modulus of the intensity, smoothed by a kernel θa, |∇(I ∗ θa)|, is locally
maximum in the direction of the gradient ∇(I ∗ θa).
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Variation of the intensity of a Gaussian distribution; where are the edges?
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Application: edge detection in 2D images

New Edge Model (Mallat-Zhong, Mallat-Hwang 92, Le Cadet 2004)
f image smoothed by a kernel θa of scale a with 0 < a < amax :
ga = f ∗ θa. If there exists a connected curve through scales, along
which all points are local maxima in the gradient direction ∇ga, the
limit (x0, y0) of this curve at small scales is an edge point.

a=1

a=N
(échelle la

plus grossière)

  Point de 
contour 

significatif
contour non

  Point de 

significatif

Figure: 2D maxima lines
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Application: modulus of the wavelet transform local max.
Fine scale
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Application: modulus of the wavelet transform local max.
Intermediate scale
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Application: modulus of the wavelet transform local max.
Large scale
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Application: modulus of the wavelet transform local max.

Figure: Edge points (top), wavelet coefficients maps at fixed scale (bottom) of
a X-Ray image
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Practice of the maxima line construction in 2D
1 Map of modulus maxima (in the gradient direction) at each scale.
2 Two modulus maxima between two successive scales are linked if

they are neighbors in the gradient direction.

s=1

s=N
(coarsest

scale)

minimum

length

required

a+1

aMax à

chainer

(Xa,Ya, a+1)

(Xa,Ya,a)
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Practice of the maxima line construction in 2D
1 Let Mf (x0, y0, adep) be a modulus maximum at scale adep.
2 One consider, the 9 modulus Mf (x0(±1), y0(±1), adep+1).
3 One links with the maximum modulus that has the angle

Af (x1, y1, adep+1) closest to Af (x0, y0, adep).

a+1

aMax à

chainer

(Xa,Ya, a+1)

(Xa,Ya,a)
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The dyadic wavelet transform
The scale varies along the dyadic sequence {2j}j∈Z. Let 1 ≤ k ≤ 2

ψk(x) = − ∂θ

∂xk
, ψk

2j (x) = 1
2j ψ

k
( x

2j

)
, ψ̌k

2j (x) = ψk
2j (−x)

The dyadic wavelet transform at b = (b1, b2) is:

W k(2j ,b) = ⟨f , ψk
2j (· − b)⟩ = f ∗ ψ̌k

2j (b)

Let θ2j (x) = 2−jθ(2−jx) and θ̌2j (x) = θ2j (−x). The wavelet transform
components are proportional to the gradient of f smoothed by θ̌2j :(

W 1f (2j ,b)
W 2f (2j ,b)

)
= 2j

(
∂
∂b1

(f ∗ θ̌2j )(b)
∂
∂b2

(f ∗ θ̌2j )(b)

)
= 2j∇(f ∗ θ̌2j )(b)
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The dyadic wavelet transform
The modulus of this gradient vector is proportional to the wavelet
transform modulus:

Mf (2j ,b) =
√

|W 1f (2j ,b)|2+|W 2f (2j ,b)|2

The angle Af (2j ,b) of the wavelet transform vector:

Af (2j ,b) =
{
α(b) if W 1f (2j ,b) ⩾ 0
π + α(b) if W 2f (2j ,b) ⩾ 0 ,

α(b) = tan−1
[

W 2f (2j ,b)
W 1f (2j ,b)

]
,nj(b) = (cos Af (2j ,b), sin Af (2j ,b))

An edge point b0 at the scale 2j : Mf (2j ,b) is locally maximum at
b = b0 when b = b0 + λnj(b0) and |λ| small enough.
The level sets of g(x) are the curves x(s) where g(x(s)) is
constant. If τ ⊥ x(s) then

∂x(s)
∂s = ∇g · τ = 0
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The dyadic wavelet transform
The level set property applied to
g = f ∗ θ̌2j proves that a
maximum point b0 the vector
nj(b0) of angle Af (2j ,b0) is
perpendicular to the level set of
f ∗ θ̌2j going through b0.

If the intensity profile remains
constant along an edge, then the
inflection points (maxima points)
are along a level set. The intensity
profile of an edge may not be
constant but its variations are
often negligible over a
neighborhood of size 2j for a small
scale 2j . The tangent of the
maxima curve is then nearly
perpendicular to nj(b0)
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Reconstruction of edge curves

Credits: Mallat
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Application: characterization of the singularities
Regularity of edge curves
Let 0 ≤ α < 1. f (x , y) Lipschitz-α at (x0, y0) if ∃A s.t ∀h = (h1, h2),

|f (x0 + h1, y0 + h2) − f (x0, y0)|≤ A∥h∥α

+

Contour

+

Contour

(x ,y )
0 0

(x ,y )
0 0grad f

On a curve of discontinuity, the estimation of the regularity reduces to
the one dimensional case. f is uniformly Lipschitz-α inside Ω iff

∀(x , y) ∈ Ω, ∀j , |Mf (x , y , 2j)| ⩽ A 2j(α+1)
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Computation of the Lipschitz regularity
The Lipschitz regularity is evaluated at each edge point, by computing
the slope of log Mf (xc , yc , a) = g(log a)

Figure: Three noisy domain: maps of modulus, Lipschitz regularity, denoising
with α Kévin Polisano Wavelets and Applications 37/43



Examples

Figure: Mandrill original image (top left), large scale edge points (bottom left)
and fine scale edge points (top right) and local regularities computed on
maxima lines (bottom right)
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Examples

Figure: Top: original images; Bottom: edge points (the colors represent the
regularity parameter)
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Examples

Figure: Edge detection on two X-rays of vertebra
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Reconstruction from edges
Image approximations can be computed by projecting the image on the
space generated by wavelets on the modulus maxima support. Let Λ be
the set of all modulus maxima points (2j ,b), n is the unit vector in the
direction Af (2j ,b) and

ψ3
2j ,b(x) = 22j ∂

2θ2j (x − b)
∂n2

Since the wavelet modulus Mf (2j ,b) has a local maximum at b in the
direction of n then ⟨f , ψ3

2j ,b⟩ = 0.
A modulus maxima approximation fΛ can be computed as an
orthonormal projection of f on the space generated by the family of
maxima wavelets {ψk

2j ,b}(2j ,b)∈Λ,1≤k≤3:

fΛ = L−1(Lf ), Ly =
∑

(2j ,b)∈Λ

2∑
k=1

⟨y , ψk
2j ,b⟩ψk

2j ,b

Credits: Mallat (see chapter 5 on frames and especially section 5.1.3 on dual synthesis)
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Reconstruction from edges

Credits: Mallat
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Denoising by multiscale edge thresholding

Credits: Mallat
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