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The 2D Continuous Wavelet Transform
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Bidimensional Continuous Wavelet Transform

@ 2D Wavelets
@ Directional Continuous Wavelet Transform, inversion formula
© Isotropic Wavelet Transform

@ A wavelet for image analysis: the "Canny" wavelets
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2D Fourier Transform

The bidimensional Fourier transform of a function f integrable on R? is
defined by:

P(k) = / F()e T dx, Ve R
R

If £ € L?(R?), the inversion formula is given by:

f(x) = / F(k)e* ™~ dk
R2

and the energy conservation writes:

//R2\f(x)\2dx = //Rz]f‘(k)|2dk
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2D Fourier Transform

=
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Definition of 2D wavelets

Y € LY(R?)N L?(R?) is a wavelet if it satisfies the admissibility condition:

//1R2 |1ﬁ5:|2 dk < +o00

which implies (and is equivalent provided 1 has sufficient decay at

infinity):
//R2 Y(x)dx = 0

In practice, one usually needs that 3 has p vanishing moments:

//2 X1t x2(x1, x0) dxidxe =0, Vag,ap € Nst.ag +ax <p-—1
R

Remark: this means that the Fourier transform of the wavelet should
behave as ||k||P when k — 0 in Fourier domain.
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2D Wavelet family

Let ¢/(x) be an admissible wavelet. The wavelet family is defined by
dilation, rotation, and translation from 1:

benae)= 30 (R0 (57))

with b € R? the translation parameter, a the positive scale and R~ the
rotation of angle @ in R?, corresponding to matrix

R . — cosf sind
0=\ —sinf cosh

Example (Anisotropic Morlet Wavelet)

Let u = (cos v, sin «) the unitary vector of direction «.
The (complex) Morlet wavelet is:

w(x) — efﬂ||x||2610i71'x~u
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Isotropic wavelets

Example (lterated Laplacian of Gaussian)

For n > 1, the wavelet hy, is defined by:

n 82 82 ! —T|[X
hon(x) = (—1) <W+8y2> eIl

Its Fourier transform is given by:
han(k) = 477" || K[>

For n =2, hy is the Laplacian of Gaussian, popular in computer vision,
also called the Mexican hat.

Remark: the wavelet hy, has exactly 2n vanishing moments. The
maximum of its Fourier transform hy, is achieved for kg = v/2n.
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Isotropic wavelets

Example (lterated Laplacian of Gaussian)
o Wavelet hy(x,y) (Mexican hat) and 1D section:

@ 1D section in physical and Fourier space of the wavelet hg
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2D directional continuous wavelet transform

Let ¢ be a 2D wavelet.

The directional wavelet transform of a given function f € L?(R?) is
defined by:

Wf(a,b,0) = / [ 7 Va0 () dx

_ i/W F(x) <R9 <X - b>> dx

Applying Parseval formula, it writes:

Wf(a, b, 6) —a/ 2f k)9 (aR_gk)e?™ b qk
R
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Inversion formula

The function f can be reconstructed by:

! /%O /27r / WH(a, b, 0) s p.or (%) S2 0 db
= — aﬂ N )a [
&y Jo  Jo JIR2 o (26.6) a3

[ (k)2
= dk
o= J e K[
The energy conservation writes:

+oo 2w
/ |f(x )\2dx— — / / |WF(a, b, 0)|? d—dedb
R2 R2

Gy

with
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Inversion formula with a different wavelet
Let f(x) € L?(R?).

Wavelet decomposition of f(x) with an analysing wavelet g:

W,f(a, b,0) = //RQ £(x) %g <R0 <X R b)) dx

Synthesis with a reconstruction wavelet h:

1 oo q2n 1 —b\\ d
Flx) = — / / W,f(a,b,8) ~h <R9 <X )) €2 4gdb
Cgh Jo 0 R2 a a a

Cross admissibility condition on functions g, h € L?(R?):

g(k)h(k)
cor= [ B0 gy o
£ Rz k2
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Classical examples

Wavelet constructed from the Gaussian G(x) = e "I/’

@ Wavelet transform with an isotropic wavelet
o g(x) = h(x) = AG(x) (Mexican hat)
o g(x) = G(x) (g is not a wavelet) and h(x) = AG(x)

o Wavelet transform with a vector wavelet g(x) = VG(x)
(Canny multi-scale detector)
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Isotropic Wavelet Transform

When the wavelet is real, isotropic (i.e rotation invariant
¥(x) = h(]|x||)), the wavelet transform of f comes down:

WF(a, b) = l/R F(x) 0 <" - b> dx

= the integral on 6 disappears

From Parseval equality, it writes:

WF(a, b) = a / /R F(k) d(ak)2 b ak

= the wavelet transform acts as a filter on the Fourier transform of f
around the frequency %
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Isotropic Wavelet Transform

If ¢/ is admissible, one has the energy conservation:

1 +oo
// \f(x)\zdx:—/ / Wr(a, b)2 %2 ab
R2 cy Jo R? a

and the synthesis formula:

1 oo a
)= f [, WG, b)ias(x) 55 db
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The Canny multiscale detector for image processing

Let © be a smoothing kernel such that:

° [[2©=1
0e©0>0

e O isotropic or O(x,y) = ©1(x)O2(y)
Example (Gaussian)
O(x) = G(x) = e IxI* 3 smoothing kernel isotropic and tensorial
Directional Wavelets

W(x) = VO(x) = (¥',¢?)

00 00
1__YV¥Y 2_ _ 7
7!} N 8X1 and @Z} aXQ

Wavelets in the direction ¢ = 9% = cos np%i + sin 90%2 =¢-VG
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The Canny multiscale detector for image processing

Decomposition: computation of the vector wavelet transform

W (a, b) = (Wlf(a, b), W?f(a, b))

1 _
o Wlf(a,b) = //2 f(x)gw1 <X ; b) dx — vertical singularities
R

1 —b
o W3f(a,b) = // f(X)5¢2 (x ; )dx — horizontal singularities
R2
Interpretation:

Wf(a,b)=aV (f* 1y <X)> (b)

a

W represents the gradient of the image, smoothed by © at scale a
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Proof: Let define L(x) = —%, 0, = loo1, Pk(x) = Iyk(-X%).

1,
W*f(a, b) = / £(x) <
R2 a

Sk (22 ax= (r b))
By the chain rule 57 9 (QoL)(x)= =

a—e (L(x ))ax (x) hence

Bt = 200 (XY 200 (Loor) (0= a2

=a—
a an a 8Xk 8Xk

(F05)b) = 3 [[ F0)5 26— x)dx

- 8bk//f x)dx

- %k(f*e)( )

(Wlf(a, b)) . (ab (f % ©,)(b)

W?2f(a, b)
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Multiscale detector and directional wavelet transform

If © is isotropic, one has g—g(R_ex) = cosf g—g(x) +sinf g—g(x)
Then,

Wyf(a, b, ) = G- Wf(a, b) — singularities in the direction oa

where W1 f is the directional wavelet transform of f with Yt as
analyzing wavelet.

One can write:
Wyif(a,b,p) \ _ [ cosp sing W1f(a, b)
Wy2f(a, b, ¢) —singp cos W?2f(a, b)

In vector formulation:
Wye =R_, W

~ will provide a reconstruction formula for the multiscale detector!
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Inversion of the multiscale detector (Le Cadet, PhD 2004)

f(x)—gw/>oa3//Rszab P.5(x)db

with Cyn = 72 for © = G.
Proof: The reconstruction formula of the directional wavelet transform

with wavelet 1)! gives:
)> d9d db

Wognh e (R (%

Replacing Wy1f(a, b, 0) by its definition:
f(x)

Lo e 1 . )
_ ﬁ/o /0 //RQ [cos§ W'F(a, b) + sin® W2F(a, b)]
s

109 <R—9 <X - b)) deE db
aoxi a
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If © is isotropic, one has:

00 00 00
8X1(R x)—cosea—Xl( )+sm08—2( x)
then
F(X)Cit = [0 %2 [fredb [§7 dO cos? § W' (a, b) 1 9O (X -b)
+ Lm0 %2 flpe db [T AOsin? 0 Wf(a, b) 1 90 (X =b)

+ fa>0 3 I[Rz dbfo27rd9COSGSln9W1f(a b)%aﬁ( b)

[}

B‘

+ fi0% [l db [§T A cosOsin 0 W2F(a, b) 199 (X52)

Since f027r cos? 0 df = fo sin?6df = 7 and foz’T cosfsinfdf = 0 then

_C@bl/>o P2 /deb (W (a, b} p(x) + W2F(a, b)3 5(x)] D

[A—

Kévin Polisano Wavelets and Applications 21/43



Energy conservation formula

The vector Wf(a, b) should be represented in modulus-orientation:
Mf(a,b) = ||Wf(a,b)| Modulus
Af(a,b) = Arg(Wf(a,b)) Orientation

The energy conservation (with an isotropic kernel ©) writes:
| fx2dx:l/ / (Mf(a, b))? db
/R2| Gl Cy Jaso @ /w2

Example (Application: edge detection in 2D images)
© Edge points at scale a are points where b — Mf(a, b) is locally
maximum in the direction Af(a, b).
@ Estimation of the maxima lines linking edge points through scales a.
The tops of these maxima lines (a — 0) finally constitute the edge
points of the image.

© Computation of the Lipschitz regularity at any edge point.
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Application: edge detection in 2D images

Detection and classification of edges of a regular image, regular outside
regular singularity lines.

The edge is characterized by

a singularity in the intensity,

in the direction of the gradient \2
Along the edge, i.e. in the
orthogonal direction of the gradient,
the regularity is maximal

Remark: In pratice one will consider V(/ ﬁG(g)) which correspond
to wavelet coefficients of / with a wavelet Gaussian gradient.
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Application: edge detection in 2D images

Edge Model (Canny 86)

A point (xo, yo) of an image is an edge point if at this point the gradient
modulus of the intensity, smoothed by a kernel 8,, |V (/% 6,)|, is locally
maximum in the direction of the gradient V(/ x 6,).

Variation of the intensity of a Gaussian distribution; where are the edges?
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Application: edge detection in 2D images

New Edge Model (Mallat-Zhong, Mallat-Hwang 92, Le Cadet 2004)

f image smoothed by a kernel 0, of scale a with 0 < a < amax:

g, = f % 0,. If there exists a connected curve through scales, along
which all points are local maxima in the gradient direction Vg,, the
limit (xo, yo) of this curve at small scales is an edge point.

a=1
—
Point de / A ; Point de
contour non ; \»cn{q{our‘ R
significatif ; significatif
LT

a=N

(échelle la
plus grossiére)

Figure: 2D maxima lines
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Application: modulus of the wavelet transform local max.
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Application: modulus of the wavelet transform local max.

Intermediate scale
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Application: modulus of the wavelet transform local max.

Large scale
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Application: modulus of the wavelet transform local max.

Figure: Edge points (top), wavelet coefficients maps at fixed scale (bottom) of
a X-Ray image
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Practice of the maxima line construction in 2D

@ Map of modulus maxima (in the gradient direction) at each scale.

@ Two modulus maxima between two successive scales are linked if
they are neighbors in the gradient direction.

s=1
AT =
A ;
: (Xa.Ya, at1) // a+1
LT Ve
e :
length :
required T Max a a
® chainer
s=N

(coarsest
scale)
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Practice of the maxima line construction in 2D

@ Let Mf(xo, Y0, adep) be a modulus maximum at scale agep.

@ One consider, the 9 modulus Mf(xo(£1), yo(£1), adep+1)-

© One links with the maximum modulus that has the angle
Af(x1, y1, adep+1) closest to Af(xo, Y0, adep)-

(Xa,Ya, a+1) ///,/ ” a+1
N —
Max a a
. (Xa,Ya.a)
chainer
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The dyadic wavelet transform

The scale varies along the dyadic sequence {2/};cz. Let 1 < k <2

00 1 v
V) =g w0 = 50* (%) 0 =vh(x)

oxi’
The dyadic wavelet transform at b = (b, bp) is:
WK, b) = (f, 0% (- — b)) = f x (b)

Let 0y (x) = 2776(277x) and f,(x) = 0 (—x). The wavelet transform
components are proportional to the gradient of f smoothed by 6,;:

WiF(2, b)) . (2 (Fbx)(b)\ 5
(sz(z,-,b» e (zg; " é;)(b)> = 2V(F i) ()
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The dyadic wavelet transform

@ The modulus of this gradient vector is proportional to the wavelet
transform modulus:

MF (2, b) = \/IWLF (2, b)[2-+| W2F (2], b) 2

e The angle Af(2/, b) of the wavelet transform vector:

i) a(b) if WH(2/,b) >0
Af(z’b){ T+ a(b) if W2F(2 b)>0

W2f(2/, b)

b) =tan ! | "~

a(b) = tan [Wlf(21, b)

@ An edge point by at the scale 2/: Mf(2/, b) is locally maximum at
b = by when b = by + Anj(bg) and |A| small enough.

@ The level sets of g(x) are the curves x(s) where g(x(s)) is
constant. If 7 L x(s) then

0x(s)
Os
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The dyadic wavelet transform

@ The Ievelv set property applied to Horizontal Vertical =~ Wavelet Wavelet  Wavelet
g = f x 021‘ proves that a wavelet wavelet transform  transform  transform
. ) transform  transform  modulus  angle for a modulus
maximum point by the vector Wf (u,27) wf (u,27) fon zero  maxima
n;(bo) of angle Af(2/, bg) is n Hodulus

perpendicular to the level set of
f x 0, going through by.

Sl
~
i
J

rrroees

@ If the intensity profile remains
constant along an edge, then the
inflection points (maxima points)
are along a level set. The intensity
profile of an edge may not be
constant but its variations are
often negligible over a
neighborhood of size 2/ for a small
scale 2/. The tangent of the
maxima curve is then nearly
perpendicular to n;(bg)

EEEEEEN -
IDERREN
moococoo QO
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Reconstruction of edge curves

(@) (@

FIGURE 6.11

Multispale edg_es of the Lena image sho_wn in Figure 6.12. (a) (W_/lf(u, 2/)} 7<j3.
(b) (W2 (11, 27)} —7j<—3. (€) {MF (10, 27)} —7<j=—3. (d) {Af (11, 2)} —7<j<—3. (€) Modulus
Credits: Mallat maxima support. (f) Support of maxima with modulus values above a threshold.
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Application: characterization of the singularities

Regularity of edge curves
Let 0 < a < 1. f(x,y) Lipschitz-av at (xp, yo) if A s.t Yh = (hy, h2),

|f(Xo + h1, 0+ hz) - f(XOaYO)|§ AHhHa

xe¥)

grad £ (x,.y,

7 el
Contour Contour

On a curve of discontinuity, the estimation of the regularity reduces to
the one dimensional case. f is uniformly Lipschitz-« inside € iff

V(x,y) € Q Vj, [MFf(x,y,2)| < A2ltD
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Computation of the Lipschitz regularity

The Lipschitz regularity is evaluated at each edge point, by computing
the slope of log Mf(xc, yc, a) = g(log a)

Figure: Three noisy domain: maps of modulus, Lipschitz regularity, denoising
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Examples

Figure: Mandrill original image (top left), large scale edge points (bottom left)
and fine scale edge points (top right) and local regularities computed on
maxima lines (bottom right)
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Examples

8=

Figure: Top: original images; Bottom: edge points (the colors represent the
regularity parameter)
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Examples

Figure: Edge detection on two X-rays of vertebra
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Reconstruction from edges

Image approximations can be computed by projecting the image on the
space generated by wavelets on the modulus maxima support. Let A be
the set of all modulus maxima points (2/, b), n is the unit vector in the
direction Af(2/, b) and

820,(x — b)
on?

Since the wavelet modulus Mf(2/, b) has a local maximum at b in the
direction of n then (f, 3, ) = 0.

wgf,b(x) =2%

A modulus maxima approximation fp can be computed as an
orthonormal projection of f on the space generated by the family of

: P :
maxima wavelets {1/12]7b}(2j,b)€,\,1§k§3.

2
—_q1-1 _ k k
fA=L""(Lf), Ly= Z Z<y7 ng,bng,b
(2,b)eN k=1
Credits: Mallat (see chapter 5 on frames and especially section 5.1.3 on dual synthesis)
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Reconstruction from edges

FIGURE 6.12

(a) Original Lena image. (b) Image reconstructed from the wavelet maxima displayed in
Figure 6.11(e) and larger-scale maxima. (c) Image reconstructed from the thresholded wavele
maxima displayed in Figure 6.11(f) and larger-scale maxima.

Credits: Mallat
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Denoising by multiscale edge thresholding

FIGURE 6.13
(a) Noisy peppers image. (b) Peppers image restored from the thresholding maxima chains
shown in (). The images in row (¢) show the wavelet maxima support of the noisy image—the
scale increases from left to right, from 27 to 23 The images in row (d) give the maxima
H . support computed with a thresholding selection of the maxima chains.
Credits: Mallat prort comp £
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