Wavelets and Applications

Kévin Polisano
kevin.polisano@univ-grenoble-alpes.fr

M2 MSIAM & Ensimag 3A MMIS

December 3, 2021
The 1D Discrete Wavelet Transform
From the CWT to the DWT

The CWT, or Continuous Wavelet Transform, maps a signal f into a function $W_f(a,b)$ defined for all scales a and locations b. The basic idea is to take a function $\psi(x)$, called a mother wavelet, and scale it by a factor of a and translate it by b to obtain $\psi_{a,b}(x) = \frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right)$.

This function is then convolved with the signal f, such that $f \ast \psi_{a,b}$. The resulting function is then evaluated at different scales a and locations b to form the CWT.

The DWT, or Discrete Wavelet Transform, is a discrete version of the CWT, which uses a finite set of wavelets and scales. It is often used in signal processing and data compression.
Scaling function

When $Wf(a, b)$ is known only for $a < a_0$, to recover f we need a complement of information that corresponds to $Wf(a, b)$ for $a > a_0$. This is obtained by introducing a scaling function ϕ that is an aggregation of wavelets at scales larger than 1:

$$|\hat{\phi}(\omega)|^2 = \int_1^{+\infty} |\hat{\psi}(a \omega)|^2 \frac{da}{a} = \int_\omega^{+\infty} \frac{|\hat{\psi}(\xi)|^2}{|\xi|} d\xi$$

and the complex phase of $\hat{\phi}(\omega)$ can be arbitrarily chosen. One can verify that $\|\phi\| = 1$, and from admissibility condition that $\lim_{\omega \to 0} |\hat{\phi}(\omega)|^2 = C_\psi$. The scaling function therefore can be interpreted as the impulse response of a low-pass filter. Let us denote $\phi_a(x) = a^{-1/2} \phi(x/a)$ and $\check{\phi}_a(x) = \phi_a^*(-x)$. The low-frequency approximation of f at scale a is $Lf(a, b) = f \ast \check{\phi}_a(b)$ and it can be shown that:

$$f(x) = \frac{1}{C_\psi a_0} Lf(a_0, \cdot) \ast \phi_{a_0}(x) + \frac{1}{C_\psi} \int_0^{a_0} Wf(a, \cdot) \ast \psi_a(x) \frac{da}{a^2}$$
From the CWT to the DWT

- We need to discretize the CWT for numerical applications
- It requires to choose a sampling grid, that is a **discrete lattice**

\[\Gamma = \{ a_j, b_{j,k}, j, k \in \mathbb{Z} \} \]

- Noting \(\psi_{j,k} = \psi_{a_j,b_{j,k}} \) and \(\tilde{\psi}_{j,k} \) explicitly derived from \(\psi_{j,k} \) we want:

\[
 f = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \tilde{\psi}_{j,k}
\]

- The **dyadic grid** corresponds to the choice \(a_j = 2^{-j} \) and \(b_{j,k} = k2^{-j} \)

\[
 \psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k), \quad j, k \in \mathbb{Z}
\]

\[\Rightarrow \text{ mostly leads to frames not bases.} \]
From the CWT to the DWT

Credits: S. Mallat
From the CWT to the DWT

Definition (Frame)

\(\{ \psi_{j,k} \} \) is a frame in the Hilbert space \(\mathcal{H} \) if there exists \(B \geq A > 0 \) such that

\[
A \| f \|^2 \leq \sum_{j,k \in \mathbb{Z}} | \langle f, \psi_{j,k} \rangle |^2 \leq B \| f \|^2
\]

- \(A, B \) are the frame bounds
- \(A = B \neq 1 \) is a tight frame
- \(A = B = 1 \) and \(\| \psi_{j,k} \| = 1 \) is an orthonormal basis

\(\Rightarrow \) Given a wavelet \(\psi \) we need to find lattice \(\Gamma \) such that \(\{ \psi_{j,k} \} \) is a "good frame" that is \(\frac{A}{B} \approx 1 \).
Questions

- Can we reconstruct any function of Hilbert space from the discrete subset of wavelet coefficients?
- Is there a basis of orthogonal wavelets on $L^2(\mathbb{R})$?
- How can we construct such wavelets? With specific properties: regular, with compact support, ...
- Is there a fast algorithm to compute them?
The effervescence

- **Meyer** made the link with the Calderon’s identity

\[f(x) = \int_0^{+\infty} \int_{\mathbb{R}} Wf(a, b) \psi_{a,b}(x) \, db \, \frac{da}{a^2} \]

- **Meyer, Grossmann, Daubechies** (1985): construction of \(L^2(\mathbb{R}) \) bases:

\[f(x) = \sum_{j,k} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

- **Meyer, Malat** (1986): Fast Wavelet Transform (FWT)

![Yves Meyer](image1.png)
![Ingrid Daubechies](image2.png)
![Stéphane Mallat](image3.png)
Fourier series limitations

Discontinuities require a lot of sinusoids to be described

\[f(x) = \begin{cases}
-1 & \text{if } -\pi \leq x < 0 \\
+1 & \text{if } 0 \leq x < \pi
\end{cases} = \sum_{n=1}^{+\infty} \frac{4}{\pi(2n-1)} \sin((2n-1)x) \]

From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j - 1} d_{j,k} 2^j \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 \) terms
From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + 2 \) terms.
From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + 2 + 4 \) terms
From Fourier series to Wavelet series

\[
f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^j \psi(2^j x - k)
\]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + 2 + 4 + 8 \) terms.
From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + 2 + 4 + 8 + 16 \) terms
From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + 2 + 4 + 8 + 16 + 32 \) terms.
From Fourier series to Wavelet series

\[f(x) = \sum_{j=0}^{J} \sum_{k=0}^{2^j-1} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: For \(J = 0 \) the approximation contains \(N = 1 + \ldots + 512 = 1023 \) terms.
From Fourier series to Wavelet series

\[f(x) \approx \sum_{|d_{j,k}| > 10^{-2}} d_{j,k} 2^{j/2} \psi(2^j x - k) \]

Figure: The approximation contains \(N = 207 \) terms
The four musketeers of wavelets

Figure: Stéphane Mallat, Yves Meyer, Ingrid Daubechies & Emmanuel Candès
1. The Haar Basis
Decomposition algorithm

\[
\begin{bmatrix}
2 & 4 & 8 & 12 & 14 & 0 & 2 & 1 \\
\end{bmatrix}
\downarrow \text{(means)}
\begin{bmatrix}
3 & 10 & 7 & 1.5 \\
\end{bmatrix}
\downarrow \text{(means)}
\begin{bmatrix}
6.5 & 4.25 \\
\end{bmatrix}
\downarrow \text{(means)}
\begin{bmatrix}
5.375 & 1.125 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & -2 & 7 & 0.5 \\
\end{bmatrix}
\downarrow \text{(details)}
\begin{bmatrix}
-3.5 & 2.75 \\
\end{bmatrix}
\downarrow \text{(details)}
\begin{bmatrix}
5.375 & 1.125 & -3.5 & 2.75 & -1 & -2 & 7 & 0.5 \\
\end{bmatrix}
\]

\[
\leftarrow \rightarrow
\]

Kévin Polisano
Wavelets and Applications
Decomposition algorithm

Credits: V. Perrier
The Haar basis of $L^2(0, 1)$

Let $\varphi = 1$ on $[0, 1]$ and $\psi(x) = \begin{cases}
1 & \text{if } x \in [0, \frac{1}{2}] \\
-1 & \text{if } x \in \left[\frac{1}{2}, 1\right]
\end{cases}$

For $j \geq 0$ and $0 \leq k \leq 2^j - 1$, one set: $\psi_{j,k}(x) = 2^j \psi(2^j x - k)$ then

$$\psi_{j,k}(x) = \begin{cases}
2^j & \text{if } x \in [k2^{-j}, (k + \frac{1}{2})2^{-j}] \\
-2^j & \text{if } x \in \left[(k + \frac{1}{2})2^{-j}, (k + 1)2^{-j}\right]
\end{cases}$$

The family $\{\varphi, \psi_{j,k}\}$ is an orthonormal basis of $L^2(0, 1)$, called Haar basis.
The Haar basis of $L^2(0, 1)$

Let $\varphi = 1$ on $[0, 1]$ and $\psi(x) = \begin{cases} 1 & \text{if } x \in [0, \frac{1}{2}] \\ -1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$

For $j \geq 0$ and $0 \leq k \leq 2^j - 1$, one set: $\varphi_{j,k}(x) = 2^j \varphi(2^j x - k)$ then

$$\varphi_{j,k}(x) = \begin{cases} 2^j & \text{if } x \in [k2^{-j}, (k + 1)2^{-j}] \\ 0 & \text{otherwise} \end{cases}$$

Compression: $\varphi_{j,k} = \frac{\varphi_{j+1,2k} + \varphi_{j+1,2k+1}}{\sqrt{2}}$, $\psi_{j,k} = \frac{\varphi_{j+1,2k} - \varphi_{j+1,2k+1}}{\sqrt{2}}$
The Haar basis of $L^2(0, 1)$

- Projection on approx. space: $P_{V_j} f = \sum_k \langle f, \varphi_{j,k} \rangle \varphi_{j,k} = \sum_k c_{j,k} \varphi_{j,k}$
- Projection on details space: $P_{W_j} f = \sum_k \langle f, \psi_{j,k} \rangle \psi_{j,k} = \sum_k d_{j,k} \psi_{j,k}$
- Projection on orthogonal spaces: $P_{V_{j+1}} f = P_{V_j} f + P_{W_j} f$

Credits: G. Peyré
The Haar basis of $L^2(0, 1)$

- V_j: vector space of constant functions on $\left\{ \left[\frac{k}{2^j}, \frac{k+1}{2^j} \right] \right\}_{k=0,\ldots,2^j-1}$

- The family $\psi_{j,k}(t)$ defines a o.n.b of W_j (dim $2^j - 1$) such that

$$V_{j+1} = V_j \oplus W_j$$

- $f^{j+1}(x) = P_{V_{j+1}} f(x) = \sum_{k=0}^{2^{j+1}-1} c_{j+1,k} \varphi_{j+1,k}(x)$

- $f^{j+1}(x) = P_{V_j} f(x) + P_{W_j} f(x) = \sum_{k=0}^{2^j-1} c_{j,k} \varphi_{j,k}(x) + \sum_{k=0}^{2^j-1} d_{j,k} \psi_{j,k}(x)$

- $c_{j,k} = \frac{c_{j+1,2k} + c_{j+1,2k+1}}{\sqrt{2}}$, $d_{j,k} = \frac{c_{j+1,2k} - c_{j+1,2k+1}}{\sqrt{2}}$
The Haar basis of $L^2(0, 1)$

- **Decompression:**

\[
\varphi_{j+1, 2k} = \frac{\varphi_{j, k} + \psi_{j, k}}{\sqrt{2}}, \quad \varphi_{j+1, 2k+1} = \frac{\varphi_{j, k} - \psi_{j, k}}{\sqrt{2}}
\]

- \(f^{j+1}(x) = P_{V_{j+1}} f(x) = \sum_{k=0}^{2^{j+1} - 1} c_{j+1, k} \varphi_{j+1, k}(x) \)

- \(f^{j+1}(x) = P_{V_j} f(x) + P_{W_j} f(x) = \sum_{k=0}^{2^j - 1} c_{j, k} \varphi_{j, k}(x) + \sum_{k=0}^{2^j - 1} d_{j, k} \psi_{j, k}(x) \)

- \(c_{j+1, 2k} = \frac{c_{j, k} + d_{j, k}}{\sqrt{2}}, \quad c_{j+1, 2k+1} = \frac{c_{j, k} - d_{j, k}}{\sqrt{2}} \)
Haar Basis Functions

Two equivalent bases of the piecewise constant function space on [0,1], associated to the subdivision $k/8$, $k = 0, \ldots, 7$

Credits: V. Perrier
Advantage of the decomposition

The Haar decomposition of a function \(f \in L^2(0, 1) \) finally writes:

\[
 f = c_0 + \sum_{j=0}^{+\infty} \sum_{k=0}^{2^j-1} d_{j,k} \psi_{j,k}
\]

with

\[
 c_0 = \langle f, \varphi \rangle = \int_0^1 f(x) \, dx, \quad d_{j,k} = \langle f, \psi_{j,k} \rangle = \int_0^1 f(x) \psi_{j,k}(x) \, dx
\]

Local smoothness characterization

(i) if \(f \in C^1(I_{j,k}) \) then \(|d_{j,k}| \leq C 2^{-3j/2} \)

(ii) if \(f \in C^\alpha(x_0) \) i.e. \(|f(x) - f(x_0)| \leq k|x - x_0|^\alpha \) \((0 < \alpha < 1) \) then

\[
 |d_{j,k}| \leq C 2^{-j(\alpha+1/2)}
\]

⇒ Useful property for compression!
Proof of (i)

For fixed $j \geq 0$ and $k \in \{0, \ldots, 2^j - 1\}$, let $l_{j,k} := [k2^{-j}, (k + 1)2^{-j}]$.

$$\text{Supp}\{\psi_{j,k}\} = [k2^{-j}, (k + 1)2^{-j}] = l_{j,k}$$

The Haar coefficient on $\psi_{j,k}$ of a function f is given by:

$$d_{j,k} = \int_{l_{j,k}} f \psi_{j,k}$$

If $f \in C^1(l_{j,k})$ then for all $x \in l_{j,k}$:

$$f(x) = f \left(x - \left(k + \frac{1}{2} \right) 2^{-j} \right) + \left(x - \left(k + \frac{1}{2} \right) 2^{-j} \right) f'(\theta x), \quad \theta x \in l_{j,k}$$

Then,

$$d_{j,k} = \int_{l_{j,k}} \left(x - \left(k + \frac{1}{2} \right) 2^{-j} \right) f'(\theta x) \psi_{j,k}(x) \, dx$$

since $\int \psi_{j,k} = 0$, hence

$$|d_{j,k}| \leq \sup_{l_{j,k}} |f'| \int_{l_{j,k}} |2^{-j-1}2^{j/2}| \, dx \leq \frac{1}{2} \sup_{l_{j,k}} |f'| \ 2^{-3j/2}$$
Example: \(f(x) = \sqrt{|\cos 2\pi x|} \)

Left figure:
Function f sampled on \(1024 = 2^{10} \) values.

Middle figure:
Haar coefficient map
(abscissa: \(k2^{-j} \in [0, 1] \), ordinates: \(-j \), \(j = 1, \ldots 9 \)).

Right figure:
Reconstructed function from the 80 largest coefficients (> 0.06)
(compression = 92.2 %, \(L^2 \)-relative error = \(6.10^{-3} \)).

Credits: V. Perrier
2. Regular wavelet bases
Multiresolution Analysis (MRA)

A multiresolution analysis of $L^2(\mathbb{R})$ is a sequence of closed subspaces $(V_j)_{j \in \mathbb{Z}}$ s.t.:

1. $\forall j \in \mathbb{Z}, \, V_j \subset V_{j+1} \subset \cdots \rightarrow L^2(\mathbb{R})$,
2. $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$ and $\bigcup_{j \in \mathbb{Z}} V_j = L^2(\mathbb{R})$,
3. $f(x) \in V_j \iff f(2x) \in V_{j+1}$,
4. $f(x) \in V_0 \iff \forall n \in \mathbb{Z}, \, f(x - n) \in V_0$,
5. $\exists \varphi \in V_0 \text{ s.t } \{\varphi(x - n) : n \in \mathbb{Z}\}$ is an orthonormal basis of V_0.

φ is called the scaling function of the multiresolution analysis.
Multiresolution Analyses – Examples

The spaces V_j are dilation invariant, then:

$$V_j = \text{Vec} \{ \varphi_{j,k} := 2^{\frac{j}{2}} \varphi(2^j x - k) ; \ k \in \mathbb{Z} \}$$

Haar:

$$V_0 = \{ \text{Piecewiese constant functions on } [k, k+1[, \ \forall k \in \mathbb{Z} \}$$

Splines of degree 1:

$$V_0 = \{ \text{Continuous functions on } \mathbb{R}, \ \text{affines on } [k, k+1[, \ \forall k \in \mathbb{Z} \}$$

Splines of degree n:

$$V_0 = \{ C^{n-1} \text{ functions on } \mathbb{R}, \ \text{piecewise polynomial of deg } n \text{ on } [k, k+1[\}$$

Shannon:

$$V_0 = \{ f \in L^2(\mathbb{R}) ; \ \text{supp } \hat{f} \subset [1, 2] \}$$
MRA – Two-scale equation for the scaling function

\[V_0 \subset V_1 = \text{span}\{\varphi_{1,k} := \sqrt{2}\varphi(2x - n) ; n \in \mathbb{Z}\}, \text{ then } \varphi \in V_0 \text{ writes:} \]

\[\varphi(x) = \sqrt{2} \sum_{n \in \mathbb{Z}} h_n \varphi(2x - n) \quad \text{with} \quad h_n = \sqrt{2} \int_{\mathbb{R}} \varphi(x) \varphi(2x - n) \, dx \]

Applying the Fourier Transform:

\[\hat{\varphi}(\xi) = m_0 \left(\frac{\xi}{2} \right) \hat{\varphi} \left(\frac{\xi}{2} \right) \quad \text{with} \quad m_0(\xi) = \frac{1}{\sqrt{2}} \sum_{n \in \mathbb{Z}} h_n e^{-2i\pi n \xi} \]

Assume that \(\varphi \in L^1(\mathbb{R}) \) and \(\int_{\mathbb{R}} \varphi = 1 \), then:

\[\hat{\varphi}(\xi) = \prod_{j=0}^{\infty} m_0 \left(\frac{\xi}{2^j} \right) \]

\((h_n) \) is a low pass filter and \(\hat{h} = \sqrt{2}m_0 \) is its transfer function.
MRA – Construction of the wavelets

$V_j \subset V_{j+1}$, let W_j be the orthogonal complement space of V_j in V_{j+1}:

$$V_{j+1} = V_j \oplus W_j$$

One searches for a function ψ s.t. $\{\psi(x - n) : n \in \mathbb{Z}\}$ is an orthonormal basis of W_0. Since $\psi \in W_0 \subset V_1$, one searches for g_n such that

$$\psi(x) = \sqrt{2} \sum_{n \in \mathbb{Z}} g_n \varphi(2x - n)$$

This is equivalent in Fourier domain to:

$$\hat{\psi}(\xi) = m_1 \left(\frac{\xi}{2} \right) \hat{\varphi} \left(\frac{\xi}{2} \right) \quad \text{with} \quad m_1(\xi) = \frac{1}{\sqrt{2}} \sum_{n \in \mathbb{Z}} g_n e^{-2i\pi n \xi}$$

⇒ What are the assumptions on filters (h_n) and (g_n) in order to construct a scaling function φ and a wavelet ψ generating a MRA?
Detail filter (necessary) constraints for h

If $\{\varphi_{j,n}\}$ is an orthonormal basis of V_j then:

1. From the two-scale equation it comes

$$\hat{h}(0) = \sqrt{2} \quad (C_1)$$

2. $\{\varphi(\cdot - n)\}_n$ orthogonal is equivalent to:

$$\forall n \in \mathbb{N}, \quad \varphi * \check{\varphi}(n) = \delta[n] \iff \sum_k |\hat{\varphi}(\xi + 2k\pi)|^2 = 1$$

since sampling a function periodizes its Fourier transform.

Inserting $\hat{\varphi}(\xi) = 2^{-1/2}\hat{h}(\xi/2)\hat{\varphi}(\xi/2)$ and separating even and odd integers terms (with \hat{h} is 2π-periodic) yields:

$$\left|\hat{h}\left(\frac{\xi}{2}\right)\right|^2 \sum_{p=-\infty}^{+\infty} \left|\hat{\varphi}\left(\frac{\xi}{2} + 2p\pi\right)\right|^2 + \left|\hat{h}\left(\frac{\xi}{2} + \pi\right)\right|^2 \sum_{p=-\infty}^{+\infty} \left|\hat{\varphi}\left(\frac{\xi}{2} + \pi + 2p\pi\right)\right|^2 = 2$$

Putting $\xi' = \xi/2$ and $\xi' = \xi/2 + \pi$ in the two sums yields:

$$|\hat{h}(\xi')|^2 + |\hat{h}(\xi' + \pi)|^2 = 2 \quad (C_2)$$
Detail filter (sufficient) constraints for h

Conversely, the following theorem gives sufficient conditions on \hat{h} to guarantee that this infinite product is the Fourier transform of a scaling function:

Theorem (Mallat, Meyer)

If $\hat{h}(\xi)$ is 2π-periodic and continuously differentiable in a neighborhood of $\xi = 0$, if it satisfies $(C_1), (C_2)$ and

$$\inf_{\xi \in [-\pi/2, \pi/2]} |\hat{h}(\xi)| > 0 \quad (C_3)$$

then

$$\hat{\phi}(\xi) = \prod_{p=1}^{+\infty} \frac{\hat{h}(2^{-p}\xi)}{\sqrt{2}}$$
Detail filter (necessary) constraints for g

\[\Rightarrow \text{If } \{\psi_{j,n}\} \text{ is an orthonormal basis of } W_j \text{ then:} \]

1. \(\{\psi(\cdot - n)\}_n \) orthogonal is equivalent to:
\[
\forall n \in \mathbb{N}, \quad \psi \star \tilde{\psi}(n) = \delta[n] \iff \sum_{k} |\hat{\psi}(\xi + 2k\pi)|^2 = 1
\]

Inserting \(\hat{\psi}(\xi) = 2^{-1/2}\hat{g}(\xi/2)\hat{\varphi}(\xi/2) \) and separating even and odd integers terms (with \(\hat{g} \) 2\pi-periodic) also yields:
\[
|\hat{g}(\xi)|^2 + |\hat{g}(\xi + \pi)|^2 = 2 \quad (C_4)
\]

2. \(\{\psi(\cdot - n)\}_n \) orthogonal to \(\{\varphi(\cdot - n)\}_n \) is equivalent to:
\[
\forall n \in \mathbb{N}, \quad \psi \star \tilde{\varphi}(n) = 0 \iff \sum_{k} \hat{\psi}(\xi + 2k\pi)\hat{\varphi}^*(\xi + 2k\pi) = 0
\]

which leads to:
\[
\hat{g}(\xi)\hat{h}(\xi)^* + \hat{g}(\xi + \pi)\hat{h}(\xi + \pi)^* = 0 \quad (C_5)
\]
Detail filter (sufficient) constraints for \(g \)

Conversely, the following theorem gives sufficient conditions on \(\hat{h} \) and \(\hat{g} \) to guarantee that the constructed wavelets \(\{\psi(\cdot - n)\}_n \) give an orthonormal basis of \(W_j \):

Theorem (Mallat, Meyer)

Under conditions \((C_1) - (C_2) - (C_3)\)

\[
\{\psi(\cdot - n)\}_n \text{ orthonormal basis of } W_j \iff (C_4) + (C_5)
\]

Quadrature mirror filters:

\[
\hat{g}(\xi) = e^{-i2\pi\xi} \hat{h}(\xi + \pi) \iff g[n] = (-1)^{1-n} h[1 - n]
\]
MRA – Wavelet decomposition

\[L^2(\mathbb{R}) = V_0 \bigoplus_{j=0}^{+\infty} W_j = \bigoplus_{j=-\infty}^{+\infty} W_j \]

\[W_j = \text{Vec} \{ \psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k) ; \ k \in \mathbb{Z} \} \]

Let \(f \in L^2(\mathbb{R}) \). Its wavelet decomposition writes:

\[f(x) = \sum_{k \in \mathbb{Z}} c_k \varphi(x - k) + \sum_{j=0}^{+\infty} \sum_{k \in \mathbb{Z}} d_{j,k} \psi_{j,k}(x) = \sum_{j=-\infty}^{+\infty} \sum_{k \in \mathbb{Z}} d_{j,k} \psi_{j,k}(x) \]

with \(c_k = \langle f, \varphi(\cdot - k) \rangle \) and \(d_{j,k} = \langle f, \psi_{j,k} \rangle \).
Property of wavelet bases

- **Vanishing Moments.** A wavelet ψ satisfies:

\[\int_{\mathbb{R}} \psi = 0 \]

One usually impose N Vanishing Moments:

\[\int_{\mathbb{R}} x^n \psi = 0, \quad \forall n = 0, \ldots, N - 1 \]

- **Characterization of the local smoothness of f.** For $n \leq N$, $\alpha < N$,

 (i) if $f \in C^n(V_{x_0})$ then $|d_{j,k}| \leq C \ 2^{-j(n+1/2)}$ (for $k2^{-j}$ "neighbor" of x_0)

 (ii) if $f \in C^\alpha(x_0)$ i.e. $|f[^\alpha](x) - f[^\alpha](x_0)| \leq k|x - x_0|^\alpha[^\alpha]$ then

 \[|d_{j,k}| \leq C \ 2^{-j(\alpha+1/2)} \quad \text{(for } k2^{-j} \text{ "neighbor" of } x_0) \]

⇒ Important property in view of compression
Examples of wavelets constructed from filters

Debauchies family

1. \(\hat{h}(0) = \sqrt{2} \)

2. \(|\hat{h}(\xi)|^2 + |\hat{h}(\xi + \pi)|^2 = 2 \)

3. \(p \) vanishing moments \(\Leftrightarrow \forall k < p, \frac{d^k \hat{h}}{d\xi^k}(\pi) = 0 \)

\(\Rightarrow \) orthogonal wavelets with minimal support \(2p - 1 \)

- \(p = 1 \) (Haar): \(h = [0.7071, 0.7071] \)
- \(p = 2 \): \(h = [0.4830, 0.8365, 0.2241, -0.1294] \)
- \(p = 3 \): \(h = [0, 0.3327, 0.8069, 0.4599, -0.1350, -0.0854, 0.0352] \)

Credits: G. Peyré
Examples of scaling functions and wavelets

Scaling function (left) and wavelet (right):
1st line: Meyer functions (C^∞ and infinite number of vanishing moments).
2nd line: Splines of degree 1 (2 vanishing moments).
Examples of scaling functions and wavelets

Scaling function (left) and wavelet (right) compactly supported:
1st line: D8 (4 vanishing moments).
2d line: Coifman C12 (4 vanishing moments).
Fast Wavelet transform (FWT)

Let f be a discrete 1D signal of length $N = 2^J$.

Step 0 of the algorithm: computing the coefficients $c_J = (c_{J,k})$

$$c_{J,k} \approx 2^{-\frac{J}{2}} f(k2^{-J}), \quad k \in \mathbb{Z},$$

(using $\int \varphi = 1$). One consider the function f_J of V_J:

$$f_J = \sum_{k \in \mathbb{Z}} c_{J,k} \varphi_{Jk}$$

Decomposition: $V_J = V_0 \oplus W_0 \oplus \cdots \oplus W_{J-1}$

For $j = J, \ldots, 1$ one uses $V_j = V_{j-1} \oplus W_{j-1}$, and then $\forall k \in \mathbb{Z}$:

$$c_{j-1,k} = \sum_{n \in \mathbb{Z}} c_{j,n} h_{n-2k}$$

$$d_{j-1,k} = \sum_{n \in \mathbb{Z}} c_{j,n} g_{n-2k}$$
Fast Wavelet transform (FWT)

Proof: From the two-scale equation

\[\varphi(x) = \sqrt{2} \sum_{n \in \mathbb{Z}} h_n \varphi(2x - n) \]

by replacing \(x \leftarrow 2^j x - k \) and multiplying by \(2^{j/2} \) we get:

\[
2^{j/2} \varphi(2^j x - k) = 2^{j/2} \sqrt{2} \sum_{n \in \mathbb{Z}} h_n \varphi(2^{j+1} x - (n + 2k))
\]

\[
\varphi_{j,k}(x) \xleftarrow{n \leftarrow n - 2k} \sum_{n \in \mathbb{Z}} h_{n-2k} \varphi_{j+1,n}
\]

\[
c_{j,k} \xleftarrow{\langle f, \cdot \rangle} \sum_{n \in \mathbb{Z}} h_{n-2k} c_{j+1,n}
\]

Example (Haar wavelets)

- Low-pass filter: \(h = [\cdots, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \cdots] \)
- High-pass filter: \(g = [\cdots, 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, \cdots] \)
Fast Wavelet transform (FWT)

Noting $c_j = (c_{j,k})_{k \in \mathbb{Z}}$:

\[
\begin{align*}
\text{convolution - decimation:} \\
\quad c_{j-1}[k] &= (c_j \ast \hat{h})[2k], \quad \forall k \in \mathbb{Z} \\
\quad d_{j-1}[k] &= (c_j \ast \hat{g})[2k], \quad \forall k \in \mathbb{Z}
\end{align*}
\]

with $\hat{h}[n] = h[-n]$ and $\hat{g}[n] = g[-n]$.

Credits: V. Perrier
Fast Wavelet transform (FWT)

Noting $c_j = (c_{j,k})_{k \in \mathbb{Z}}$:

convolution - decimation:

$$c_{j-1}[k] = (c_j \ast \hat{h})[2k], \quad \forall k \in \mathbb{Z}$$
$$d_{j-1}[k] = (c_j \ast \hat{g})[2k], \quad \forall k \in \mathbb{Z}$$

with $\hat{h}[n] = h[-n]$ and $\hat{g}[n] = g[-n]$.

Credits: V. Perrier

Kévin Polisano Wavelets and Applications
Fast Wavelet transform (FWT)

Recomposition: From the wavelet coefficients and the scaling coefficients at scale 0: $[c_{0k}, \{d_{jk}\}_{j=0}^{J-1}, k \in \mathbb{Z}]$, one wants to retrieve the scaling coefficients at finest scale J: $c_J = [(c_{Jk})_{k \in \mathbb{Z}}]$.

One uses $V_{j-1} \oplus W_{j-1} = V_j$, for $j = 0, \ldots, J - 1$:

$$c_{j,k} = \sum_{n \in \mathbb{Z}} c_{j-1,n} h_{k-2n} + \sum_{n \in \mathbb{Z}} d_{j-1,n} g_{k-2n}, \quad \forall k \in \mathbb{Z}$$
Fast Wavelet transform (FWT)

Recomposition: From the wavelet coefficients and the scaling coefficients at scale 0: \([c_{0k}, \{d_{jk}\}_{j=0}^{J-1}, k \in \mathbb{Z}}\], one wants to retrieve the scaling coefficients at finest scale \(J\): \([c_J = [(c_{Jk})_{k \in \mathbb{Z}}]}\].

It writes, in vector form, noting:

\[
\tilde{x}_n = (x \uparrow 2)[n] = \begin{cases} \ x_p & \text{if } n = 2p \\ 0 & \text{if } n = 2p + 1 \end{cases}
\]

\[c_j[k] = (\tilde{c}_{j-1} * h)[k] + (\tilde{d}_{j-1} * g)[k]\]
Fast Wavelet Transform algorithm

Algorithm (FWT)

Initialization: $c_J = f$, $N = 2^J$

For $j = J, \ldots, 0$

$\quad c_{j-1} = (c_j \ast \hat{h}) \downarrow 2$

$\quad d_{j-1} = (c_j \ast \hat{g}) \downarrow 2$

Credits: G. Peyré
Fast Wavelet Transform algorithm

Algorithm (FWT)

Initialization: \(c_J = f, \ N = 2^J \)

For \(j = J, \ldots, 0 \)

\[
\begin{align*}
 c_{j-1} &= (c_j \ast \hat{h}) \downarrow 2 \\
 d_{j-1} &= (c_j \ast \hat{g}) \downarrow 2
\end{align*}
\]

Credits: G. Peyré
Fast Wavelet Transform algorithm
Fast Wavelet Transform algorithm

c_3

\tilde{g}

\tilde{h}
Fast Wavelet Transform algorithm

\[c_3 \rightarrow \tilde{g} \rightarrow \downarrow 2 \rightarrow \tilde{h} \rightarrow \downarrow 2 \]
Fast Wavelet Transform algorithm
Example from Mallat

Credits: G. Peyré
Example: $f(x) = \sqrt{\cos 2\pi x}$

Left figure: function f discretized on $1024 = 2^{10}$ values.

Middle figure: wavelet coefficient map D_8
(abscissa: $k2^{-j} \in [0, 1]$, ordinate: $-j$, $j = 1, \ldots 9$).

Right figure: reconstructed function with the 80 highest coefficients ($> 10^{-3}$)
(compression = 92.2 %, relative error $L^2 = 3.10^{-7}$).

Credits: V. Perrier