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Linear and nonlinear approximations
in wavelet bases
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Approximation in an orthonormal basis
Let B = {ψm}m an orthonormal basis of L2([0, 1]d) for d = 1 (signals)
or d = 2 (images) and the decomposition of f into this basis:

f =
∑
m∈Z

⟨f , ψm⟩ψm

Approximation of f keeping a subset IM ⊂ Z of M = |IM | coefficients
and reconstructing from this subset:

fM =
∑

m∈IM

⟨f , ψm⟩ψm

which is the orthogonal projection of f onto VM = Span{ψm,m ∈ IM}

The approximation error is given by:

∥f − fM∥2=
∑

m/∈IM

⟨f , ψm⟩2
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Linear approximation
When IM is fixed once for all and used the same set of coefficients for
all functions, then the mapping f 7→ fM is a linear orthogonal projection
on VM satisfying:

(f + g)M = fM + gM

Examples
Fourier basis

IM = {−M/2 + 1, . . . ,M/2}

1-D Wavelet basis

IM = {m = (j , k) | j ⩾ j0}
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Linear approximation
Orthogonal projection over the space VJ

PJ : L2(R) −→ VJ
f 7 −→

∑
k∈Z

⟨f , φJ,k⟩φJ,k =
∑

j≤J−1

∑
k∈Z

⟨f , ψj,k⟩ψj,k

Strang-Fix condition of order N (xn ∈ V0):

∀n = 0, . . . ,N − 1, xn =
∑
k∈Z

an
k φ(x − k)

i.e ψ has N vanishing moments.
Projection error:

∥f − PJ f ∥2
L2=

+∞∑
j=J

∑
k∈Z

|⟨f , ψj,k⟩|2
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Linear approximation

Theorem
If f ∈ Hs(R) with s ≤ N, with

∥f − PJ f ∥L2≤ C 2−Js ∥f ∥Hs

(cf. finite elements with h = 2−J) then the following Sobolev-norm
equivalence holds:

∥f ∥2
Hs ∼

+∞∑
j=−∞

∑
k∈Z

22Js |⟨f , ψj,k⟩|2

∼ ∥P0f ∥L2+
+∞∑
j=0

∑
k∈Z

22Js |⟨f , ψj,k⟩|2
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Nonlinear approximation
To minimize the approximation error ∥f − fM∥ one can choose IM
depending on f , for instance by selecting the M largest coefficients

IM = {M largest coefficients |⟨f , ψm⟩|}
which is equivalent to a T–thresholding

IM = {m : |⟨f , ψm⟩|> T}
where T depends on the number of coefficients M.
More precisely, by ordering the coefficients dm = |⟨f , ψm⟩| by decaying
order that is dm ⩾ dm+1 then T = dM .

Hard thresholding. The non-linear approximation can be rewritten as:
fM =

∑
|⟨f ,ψm⟩|>T

⟨f , ψm⟩ψm =
∑
m

S0
T (⟨f , ψm⟩)ψm

where
S0

T (x) =
{

x if |x |> T
0 if |x |⩽ T
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Nonlinear approximation

Proposition

dm = O
(
m− α+1

2
)

⇐⇒ ∥f − fM∥= O(M−α)

Proof :

⇒ is straightforward by noticing that ∥f − fM∥2=
∑

m>M
d2

m.

⇐ Due to the decaying order we have:

M
2 × d2

M ⩽
M∑

m=M/2+1
d2

m ⩽
∑

m>M/2
d2

m = ∥f − fM/2∥2

which proves the result.
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Nonlinear approximation
Let M ∈ N. Let f ∈ L2(R), and its wavelet decomposition:

f = f0 +
+∞∑
j=0

+∞∑
k=−∞

dj,kψj,k

One sorts the wavelet coefficients dj,k in decreasing order:

|dj1,k1 |> |dj2,k2 |> · · · > |djM−1,kM−1 |> . . .

and one obtains the best M-terms non-linear approximation

fM = f0 +
M∑

i=1
dji ,kiψji ,ki

If f ∈ Bs,q
q with 1

q = 1
2 + s, which is equivalent to:

∥f ∥q
Bs,q

q
∼

∑
j∈Z

∑
k∈Z

|dj,k |q < + ∞
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Nonlinear approximation
The non-linear approximation error is ∥f − fM∥2

L2=
∑

i≥M+1
|dji ,ki |

2

Proposition

∥f − fM∥L2≤ C
( 1

M

)s
∥f ∥Bs,q

q

(in dimension d , s should be replaced by s
d ).

Proof:

m|djm,km |q≤
m−1∑
i=0

|dji ,ki |
q≤

+∞∑
i=0

|dji ,ki |
q=

∑
j∈Z

∑
k∈Z

|dj,k |q≤ C ∥f ∥q
Bs,q

q

Then
|djm,km |≤ Cm−1/q ∥f ∥Bs,q

q

∥f −fM∥L2≤ C∥f ∥Bs,q
q

 ∑
m≥M+1

m− 2
q

1/2

≤ CM
1
2 − 1

q ∥f ∥Bs,q
q

= CM−s∥f ∥Bs,q
q
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Nonlinear approximation

Remarks
For M = 2J one obtains the same convergence rate for the linear
and nonlinear approximation. But Bs,q

q is a space which contains
more functions than the space Hs , for instance discontinuous
functions for arbitrary large values of s, whenever functions of Hs

are necessarily continuous if s > d/2 (d space dimension).

One has also the characterization: if f ∈ Bs,q
q

Card {λ : |dλ|≥ ε} ≤ Cε−q
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Compression factor of a turbulent 2D vorticity field

Original
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Figure: Analysis of a 2D turbulent field: vorticity field, its wavelet coefficients,
and nonlinear approximation error, in terms of the number of retained
coefficients
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Nonlinear approximation for different class of signal models

Class of signal and image models f ∈ Θ where Θ ⊂ L2([0, 1]d)
Uniformly smooth signals and images
Sobolev smooth signals and images
Piecewise regular signals and images
Bounded variation signals and images
Cα cartoon images

The error decay

∀f ∈ Θ, ∀M, ∥f − fM∥2⩽ Cf M−α

Remark. The power α is independent of f , it depends on the
orthogonal basis considered for approximation and on Θ. It should be as
large as possible.
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Denoising in orthonornal wavelet bases
References: articles of Donoho and Johnstone

Noised data:

X [n] = f [n] + W [n], n = 0, . . . ,N − 1

X : measured data
f : (unknown) signal of size N, corrupted by noise
W : Gaussian white noise, with zero mean and variance σ2

The aim is to provide an estimator F̃ = D(X ) of f minimizing the risk
(mean square error):

r(D, f ) = E
{

∥f − F̃∥2
}

=
N−1∑
n=0

E
{

|f [n] − F̃ [n]|2
}
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Nonlinear estimators in bases
Let B = {gk ∈ RN , k = 0, . . . ,N − 1} be an orthonormal basis of RN .
One decomposes the noisy signal in B:

X [n] =
N−1∑
k=0

⟨X , gk⟩gk [n]

and the inner products satisfy:

⟨X , gk⟩ = ⟨f , gk⟩ + ⟨W , gk⟩

Remarks
(⟨W , gk⟩)k are independent Gaussian variables of variance σ2 (since
B is orthonormal).
E

{
⟨X , gk⟩2}

= |⟨f , gk⟩|2+σ2
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Diagonal operators
A diagonal operator D in the basis B leads to an estimator of the form:

F̃ = DX =
N−1∑
k=0

dk (⟨X , gk⟩) gk

where the dk are attenuation functions of the noisy coefficients.

Ideal estimator (i.e. which minimizes the risk r(D, f ))

F̃ = DX =
N−1∑
k=0

⟨X , gk⟩ θ(k) gk

with
θ(k) =

{
1 if |⟨f , gk⟩|≥ σ
0 if |⟨f , gk⟩|< σ

In this case, the operator D is nonlinear.
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Thresholding estimators
A thresholding estimator in the basis B corresponds to a diagonal
operator D:

F̃ = DX =
N−1∑
k=0

dk (⟨X , gk⟩) gk

where the dk are thresholding functions (let T be a threshold):

dk(x) = S0
T (x) =

{
x if |x |> T ("hard" thresholding)
0 if |x |≤ T

or

dk(x) = S1
T (x) =


x − T if x ≥ T ("soft" thresholding)
x + T if x ≤ −T
0 if |x |≤ T

▷ Question: choice of T to approach the risk of the ideal estimator?
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Thresholding estimators
Assume that the vector a of coefficients a[k] = ⟨f , gk⟩ is sparse (most
of them are zero i.e ℓ0 norm small). We have

X = f + W , W ∼ N (0, σ)
A = a + Z , Z ∼ N (0, σ)

If min
k:a[k] ̸=0

|a[k]| is large enough then

∥f − f̃ ∥= ∥a − ST (ã)∥

is minimum for

T = τN = max
0⩽k<N

|z [k]|∼ σ
√

2 ln N (universal threshold)

Theorem (Donoho-Jonstone)

If ∥f − fM∥= O(M−α) then E
{

∥f − F̃∥
}

= O
(
σ

2α
α+1

)
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Wavelet thresholding
Consider a (periodic) wavelet basis:

B = {φ,ψj,k ; 0 ≤ j ≤ J −1, k = 0 : 2j −1} (N = 2J = size of the data)

The thresholding estimator writes:

F̃ = ST (⟨X , φ⟩) φ+
J−1∑
j=0

2j −1∑
k=0

ST (⟨X , ψj,k⟩) ψj,k

Estimation of the noise variance σ2:
If f is piecewise regular, a robust estimator is given by the median of the
wavelet coefficients at the finest scale:

{⟨X , ψj,k⟩}k=0:2J−1−1 : 2J−1 = N
2 wavelet coefficients of the noisy

data at the finest scale.
If ⟨f , ψj,k⟩ is small (f is regular on the support of ψJ−1,k), one has:
⟨X , ψj,k⟩ ≈ ⟨W , ψj,k⟩.
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Wavelet thresholding
If ⟨f , ψj,k⟩ is large, it corresponds to a singularity of f , but for a
piecewise regular functions with isolated singularity, only few
coefficients ⟨X , ψj,k⟩ are affected at the finest scale.
Then ⟨X , ψj,k⟩ is a random variable of variance σ2.

The noise standard deviation σ is estimated by the formula (exact for
P = 2J−1 independent Gaussian variables, of zero mean, and variance
σ2):

σ ≈ MX
0, 6745

where MX is the median of the coefficients {⟨X , ψj,k⟩}k=0:2J−1−1 at the
smallest scale.

Example:
f (x) =

√
|cos 2πx | + noise (discretized on 1024 = 210 values)
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Example: f (x) =
√

|cos 2πx | + noise
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Example: f (x) =
√

|cos 2πx | + noise
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Example: Piece-Regular
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Example: WaveLab denoising function

%Generation of a signal y
n=1024; dx=1/n; x=(0:n-1)/n;
alpha=0.1 % noise coefficient
y=sqrt(abs(cos(2*pi*x)));
or
y=MakeSignal(’Piece-Regular’,n);
%
y=y+alpha*randn(size(y)); % add Gaussian noise
plot(x,y) % plot of the noisy signal
% Denoising by hardtresholding on orthonormal wavelet coeff ’Symmlet 4’
out=ThreshWave(y);
plot(x,out) % plot the denoised signal
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Sparse representation and approximation
Analysis vs. synthesis

Analysis: Φ(f ) = {⟨f , ϕp⟩}p∈Γ

Synthesis: f =
∑

p⟨f , ϕp⟩ϕp

Suppose that a sparse family of vectors {ϕp}p∈Λ has been selected to
approximate a signal f . An approximation can be recovered as an
orthogonal projection in the space VΛ generated by these vectors.

1 In a dual-synthesis problem, the orthogonal projection fΛ of f in VΛ
is computed as above from the inner products {⟨f , ϕp⟩} provided by
an analysis operator, whose only a subset of such inner products is
selected and possibly thresholded.

2 In a dual-analysis problem, the decomposition coefficients of fΛ
must be computed on a family of selected vectors {ϕp}p∈Λ, by
pursuit algorithms which compute approximation supports in highly
redundant dictionaries.
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Sparse representation and approximation
Approximation in bases vs. redundant dictionaries

1 Choose an orthogonal basis B = {ϕp}p∈Γ for which the
representation is not redundant at all, so we get a representation
which is sparse and stable

By selecting the first M coefficients (linear approximation)
By selecting the M largest coefficients (non-linear approximation)

The size support M = |Λ| of fM ≡ fΛ needed to have a good
approximation error ∥f − fM∥ depends on the regularity of f .

2 Choose a dictionary D = {ϕp}p∈Γ which is highly redundant in
order to obtain a more sparse representation (e.g. natural languages
use redundant dictionaries). Identifying patterns or features consist
on finding which vectors (atoms, words, ...) to choose to
approximate

f ≈ fΛ =
∑
p∈Λ

αpϕp

Famous algorithms: Matching pursuit, Orthogonal Matching
Pursuit (OMP), Basis pursuit, ...
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Sparse representation and approximation
Moving from transforms to dictionaries

"Xlets" (curvelets, bandlets, contourlet, ...) take advantage of the
image geometric regularity
Redundant dictionaries can improve approximation, compression
and denoising
Optimal approximation finding is NP-hard, only approximated with
matching or basis pursuits
Great impact to inverse problems

Compressed sensing
Super-resolution
Source separation

Can be used for patter recognition but problems of instabilities
Deep learning made a breakthrough in classification and pattern
recognition (dictionaries are learned i.e linear operators/filters, but
need a lot of examples). Increase the level of adaptability.

⇒ have wavelets become has-been?
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