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Understanding deep convolutional networks

Supervised learning against high dimension

e Data in high dimension x € R? with d ~ 108

@ f(x) represents a label of a class (whose can be also big, e.g 2-103
for ImageNet) for classification tasks, or a real for regression.

e Training set of n samples {x;, y; = f(x;)}i<n (few samples per class)

@ Supervised learning aims at generalizing from the samples to predict
f(x) for new datas.

Intuitively, to do an interpolation in x we need somehow to average
among known samples {x;, y;} in the neighborhood of x, saying:

vx €[0,1]%, 3 € 0,17, [x —xll<e

then if the x;'s are uniformly distributed, it would require ¢ points to
cover [0,1]9 entirely!

Points are far away in high dimension = Curse of dimensionality
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Understanding deep convolutional networks

Kernel learning

© Representation. Change of variable ®(x) = {¢x(x) }k<a’
(features) in order to nearly linearize class bounderies:

X:(vl,...,vd)gd)(x):(v{,...,vc',)

@ Classifier. Find an hyperplan (that is an vector w orthogonal to
the hyperplan) which seperates the transformed data:

f(x) = sign({®(x), w) + b) = sign <Z Wi vy, + b>

k

Questions:
@ How to construct such a representation ¢7
@ What regularity is needed?
@ Can wavelets be useful to understand and draw CNN architectures?

Kévin Polisano Wavelets and Applications



Understanding deep convolutional networks
CNN architecture

J. Hinton, Y. LeCun
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Credits: S. Mallat
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Understanding deep convolutional networks

CNN architecture: why are they so efficient for images classification?

Why convolutions? Which filters?

Why pooling? Why multi-stage and how deep?

Why and which non-linearities?

Why normalization?

What is the role of sparsity?

= what are the mathematical operators behind such architectures?

o o(z) Yann LeCun

p
P

Dimension

channels channels reduction o]0

Figure: Lj: sum of spatial convolutions across channels, subsampling. p: scalar
non-linearity (max(u,0), |ul, ...)
Credits: S. Mallat
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Understanding deep convolutional networks

The "3S" ingredients for reducing the dimensionality problem

@ Separability: variables separation can reduce the dimensionality
from d to K problems of dimension ¢ < d (e.g decomposing an
image 103 x 103 in small independant patches 8 x 8, whose
interactions between pixels are essentially local = SIFT). It is
important to make scales separation but also to capture their
interaction: deeper neurons can "see" greater portion of the image.

@ Symmetry: spatial symmetries produce translation/rotation/flip
invariance (e.g convolution filters induce translation invariance)
and reduce the dimensionality by eliminating some variables.

© Sparsity: pattern recognition consists on decomposing the problem
on sparse elementary structures in dictionaries (cat’s hears,
human's eyes, ...) in particular through the activation functions.

= take advantage both of a priori information hard-coded in the
network architecture and learning to design .
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Symmetry group

To know the regularity of f one can study it through local but also
global transformation such that symmetry group of f:

G={g:¥xeQ, f(gx)="~Ff(x)}

@ The functions g preserve the level sets Q; = {x : f(x) = t}, that is
if x € Q¢ and g € G then g.x € Q;. So it is easy to verify the
solutions of a level set has a structure of group.

o Information a priori, a symmetry subgroup H C G. If g € H then
x and g.x have the same label f(g.x) = f(x), so belong to the
same class of equivalence. The quotient of 2 by H is denoted by
Q\H, for xo € Q\H then it defines a class of equivalence:

Hy,={xeQ:gecHstgx=x}

Example: if xg is an image and f(xp) its label (cat/dog), then by
translating x = g.xg € Hy, the label remains the same f(x) = f(xo).

@ One can then reduce the number of variables (variability) within the
class of equivalence (reduction of dimensionality).
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Symmetry group

Lie group: infinitely small generators
Reduction of dimensionality in the continuous case:
dim(Q\H) = dim(Q) — dim(H)
Diffeomorphisms group
Let g : [0,1]% — [0,1]% be a C* function acting on the underlying
variable of x, namely u which is a low-dimensionnal quantity:
g-(x(v)) = x(g(v))
Examples
e Translation: g.x(u) = x(u — g) with g € R?
o Rotation: g.x(u) = x(Rgu) with g € [0, 27]
@ Globally invariant to the translation group = small

@ Locally invariant to small diffeomorphisms = HUGE
Continuous transports by successive action of generators f(x;) = f(xp)

Ox = {g.x}gec (orbit = differentiable surface of iso-label)
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Understanding deep convolutional networks

Using the information a priori on the symmetry group of f to define the
representation ® for the final classification/regression (last layer):

F(x) = (®(x), w) = D wico
K

In order that 7 is a good approximation of f, we impose that it has the
same invariants g € G that is G is a symmetry group of ®.
Two possibilities:
© G known and low dimension (translation, rotation, ...)
= constructing directly
@ G unknown and high dimension (diffeomorphisms)
= linearization + learning invariant through the classifier.

F(x) = F(g-x) = (®(x), w) = (®(g.x), w) = (®(x) — ®(g.x),w) =0
P(x)—P(gx)eV Lw

~ If V' is a hyperplan it implies to linearize transformations, by
considering small deformations g.
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Linearization of small deformations

Linearize group actions: g.x = x + 7.x so locally the tangent
hyperplan to the orbit Oy is given by 7 (Lie algebra).

For small deformations g.x(u) = x(u — 7(u)) we can write the
action 7 as a "global" action (the translation) and a small "local"
action (the deformation), since 7(u) &~ 7(up) + V7(up)(u — up) then

x(u—71(w)=x( (I—V7(u))(u—up)+ wvo— 7(wp) )

local deformation global translation

Distance for small deformations: |g|¢= ||T]|co+||V7|lo0

We do not know in advance what is the local range of
diffeomorphism symmetries.

Example: to classify images x of handwritten digits, certain
deformations of x will preserve a digit class but modify the class of
another digit.
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Linearization of small deformations

@ We shall linearize small diffeomorphims g via the change of variable
®(x), which is say Lipschitz-continuous if

3C>0,Y(x,8) €2 x G, [[o(g.x) — d(x)[[< Clglsllx]

@ The Radon—Nikodim property proves that the map that transforms
g into ®(g.x) is almost everywhere differentiable in the sense of
Gateaux. If |g|g is small, then ®(g.x) — ®(x) is closely
approximated by a bounded linear operator of g, which is the
Géateaux derivative. Locally, it thus nearly remains in a linear
space.

= The Lipschitz property of ® is difficult to be obtained. Indeed, a local
deformation is a dilation, so the representation will have to be based
on dilations, that is we will need to separate scales with the wavelet
transform.

Kévin Polisano Wavelets and Applications



Stable invariants
Fourier is not relevant
If &(x) = {|X(w)|} then:
e Invariance to translations x.(t) = x(t — ¢)

Ve eR, ®(x)=d(x)

@ Not Lipschitz stable to small deformation x,(t) = x(t — 7(t))
where 7(t) = et for example. The Fourier transform of
x(t —71(t)) = x((1 — €)t) is X(w(1 + €)), so two "bumps" centered
in w = Fwp will be "shifted" toward low frequencies by a quantity
€wp, such that they are not superposed anymore and then

[®(xr) — ®(x)[|# €

= Wavelets are localized waveforms and are thus stable to
deformations, as opposed to Fourier sinusoidal waves
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Stable invariants
Why wavelets?

@ Wavelets are uniformly stable to deformations:

If a0 (£) = (= 7(£)) then

92 = acl< CsuplT7(e)

@ Wavelet separate multiscale information

@ Wavelets provide sparse representation
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Multiscale Wavelet Transform

o Complex wavelet 1 (u) = ¥?(u) + i?(u)

o Dilated 1D wavelet: (1) = 277/ Q)(27/Qu) with A = 274/Q

e For images with two variables u = (u1, u2) add a rotation r € G of
angles 2k /K for 0 < k < K:

7!))\(“) = 2_2j¢(2_jr_1u)’ A= (2_j’ r)

B x x ¢(u)
Wx = ( X*'@’A(u) )u)\

o If \(E(w)F—i— Z/\MZA(UJ)F: 1 then W is unitary: HWXH2: HXH2

@ Wavelet transform:

Kévin Polisano Wavelets and Applications



Stable translation invariance

@ Xx x 1y is translation covariant, not invariant and

/x*w,\(u)duzo

e Translation invariant representation: [ M(x x 1) (u) du
@ Diffeomorphism stability: M commutes with diffeomorphims
o L2 stability: ||[Mh|= ||h|| and ||Mg — Mh||< ||lg — h]

= M(h)(u) = |h(u)|= \/|h*(u) 2+ hb(u) 2
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Wavelet translation invariance

@ The modulus |x % 1y, |= \/|x*¢}f’\l|2+|x*1/1§1|2 (pooling) is a
regular envelop

The average |x x ¥y, [x¢(t) is invariant to small translations
relatively to the support of ¢

Full translation invariance at the limit:

lim |x * 1y, |= /\x*wh(u)|du = |Ix *x ¥ 1
¢—1

@ First Wavelet transform modulus:

X*¢2J
W = [Wilx =
pyvv1 | 1‘ ( |X*’l/),\1| )/\

Second Wavelet transform modulus (for recovering high freq. lost):

’W2|X*U>\1:( x5 oy [ s )

[ 5 g | %

e Translation invariance by averaging ||x ¥, | * ¥, | * P, VA1, A2
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Scattering Network
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Scattering Network
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Scattering Properties

X % Qo
|X *¢)\1|*¢2J
S)x = [ % b [xthag [x o = | Ws|| Wal| Wi |x
[[|x % 4y, !*7!&2 WY

ALA2,A L
Lemma: |WiD: — D:W — k||< C||VT||so where Dyx(u) = x(u — 7(u))

Theorem (Mallat et al.)

For appropriate wavelets, a scattering is contractive
1Ssx = SuylI< lIx = ylI,
translations invariance and deformation stability:

lim HSJD x — Sux||I< C||IVT|lool|x]|
Credits: S. Mallat J=+
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Scattering Network

S0z = z * ¢gu

Fig. 2. A scattering propagator W applied to = computes the first layer of wavelet coefficients modulus U]z =
|zxx, | and outputs its local average S[0]z = zx ¢,s (black arrow). Applying W to the first layer signals U [\ ]z outputs
first order scattering coefficients S[A1] = U[M] x ¢»s (black arrows) and computes the propagated signal U[X;, Az]z
of the second layer. Applying W to each propagated signal U[p]z outputs S[p]z = Ulp]z * ¢3- (black arrows) and
computes a next layer of propagated signals.

Credits: S. Mallat
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Understanding deep convolutional networks

Simplified architecture: Deep Convolutional Trees

Architecture
@ Convolutional filters L;: band-limited wavelets
@ Pooling: L' norm as averaging
@ Nonlinear activation p: modulus

®(x) = S,x (scattering vector)

x(;) ®(z)

channels

Credits: S. Mallat
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Experiments and results

P i £
Supervised >y — €T
x S Jx Linear classifier y f( )

| |

® |Invariant to translation o Invariant to specific deformations
® Linearize small deformations ® Separates different pattern
o No learning ® Learning

@ MNIST dataset for digit classification: for a training of 50,000
digits the classification error of the Scattering Network was similar
to the Convolutional Network's (0.4 %)
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Experiments and results

@ CUReT dataset for textures classification: for a small training set
of textures 200 x 200 in 61 classes (46 per class), the classification
error with the Scattering Network achieves 0.2 %, far better than
Fourier transform’s one (1 %)
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Experiments and results

Scattering coefficients

Fig. 3. To display scattering coefficients, the disk covering the image frequency support is partitioned into sectors
Q[p], which depend upon the path p. (a): For m = 1, each Q[)] is a sector rotated by r; which approximates the
frequency support of ¥y,. (b): For m = 2, all @[\, A;] are obtained by subdividing each Q[X,].
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Fig. 4. (a) Two images z(u). (b) Fourier modulus |&(w)|. (c) First order scattering coefficients Sz[\;] displayed over
the frequency sectors of Figure 3(a). They are the same for both images. (d) Second order scattering coefficients
Sz[A1, Ao] over the frequency sectors of Figure 3(b). They are different for each image.
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Experiments and results

Scattering coefficients
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Fig. 7. (a): Image X (u) of a digit '3". (b): Arrays of windowed scattering coefficients S[p| X (u) of order m = 1, with «
sampled at intervals of 2/ = 8 pixels. (c): Windowed scattering coefficients S[p]X (u) of order m = 2.

(b) ()

Figure 4.3: (a): Example of CureT texture X (u). (b): Scattering coefficients S;[p|X,
for m = 1 and 27 equal to the image width. (c): Scattering coefficients S;[p]X (u), for
m=2.
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Experiments and results

Scattering coefficients

(@) (b) (© (d)

Fig. 5. (a) Realizations of two stationary processes X (u). Top: Brodatz texture. Bottom: Gaussian process. (b) The
power spectrum estimated from each realization is nearly the same. (c) First order scattering coefficients S[p]X are
nearly the same, for 27 equal to the image width. (d) Second order scattering coefficients S[p]X are clearly different.
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Take home message

Interpretation of convolutional networks
@ Deep convolutional network are really efficients to approximate
functions in very high dimension
@ Compute multiscale invariants of complex symmetries and learn
sparse patterns

@ Many mathematical questions still open (notion of regularity,
complexity, approximation theorems, ...)
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