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The Scattering Transform
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Understanding deep convolutional networks
Supervised learning against high dimension

Data in high dimension x ∈ Rd with d ≈ 106

f (x) represents a label of a class (whose can be also big, e.g 2 · 103

for ImageNet) for classification tasks, or a real for regression.
Training set of n samples {xi , yi = f (xi)}i≤n (few samples per class)
Supervised learning aims at generalizing from the samples to predict
f (x) for new datas.

Intuitively, to do an interpolation in x we need somehow to average
among known samples {xi , yi} in the neighborhood of x , saying:

∀x ∈ [0, 1]d , ∃xi ∈ [0, 1]d , ∥x − xi∥⩽ ϵ

then if the xi ’s are uniformly distributed, it would require ϵ−d points to
cover [0, 1]d entirely!

Points are far away in high dimension ⇒ Curse of dimensionality
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Understanding deep convolutional networks
Kernel learning

1 Representation. Change of variable Φ(x) = {ϕk(x)}k⩽d ′

(features) in order to nearly linearize class bounderies:

x = (v1, . . . , vd) Φ−→ Φ(x) = (v ′
1, . . . , v ′

d)

2 Classifier. Find an hyperplan (that is an vector w orthogonal to
the hyperplan) which seperates the transformed data:

f̃ (x) = sign(⟨Φ(x),w⟩ + b) = sign
(∑

k
wkv ′

k + b
)

Questions:
How to construct such a representation Φ?
What regularity is needed?
Can wavelets be useful to understand and draw CNN architectures?
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Understanding deep convolutional networks
CNN architecture

Credits: S. Mallat
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Understanding deep convolutional networks
CNN architecture: why are they so efficient for images classification?

Why convolutions? Which filters?
Why pooling? Why multi-stage and how deep?
Why and which non-linearities?
Why normalization?
What is the role of sparsity?

⇒ what are the mathematical operators behind such architectures?

Figure: Lj : sum of spatial convolutions across channels, subsampling. ρ: scalar
non-linearity (max(u, 0), |u|, ...)

Credits: S. Mallat
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Understanding deep convolutional networks

The "3S" ingredients for reducing the dimensionality problem
1 Separability: variables separation can reduce the dimensionality

from d to K problems of dimension q ≪ d (e.g decomposing an
image 103 × 103 in small independant patches 8 × 8, whose
interactions between pixels are essentially local ⇒ SIFT). It is
important to make scales separation but also to capture their
interaction: deeper neurons can "see" greater portion of the image.

2 Symmetry: spatial symmetries produce translation/rotation/flip
invariance (e.g convolution filters induce translation invariance)
and reduce the dimensionality by eliminating some variables.

3 Sparsity: pattern recognition consists on decomposing the problem
on sparse elementary structures in dictionaries (cat’s hears,
human’s eyes, ...) in particular through the activation functions.

⇒ take advantage both of a priori information hard-coded in the
network architecture and learning to design Φ.
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Symmetry group
To know the regularity of f one can study it through local but also
global transformation such that symmetry group of f :

G = {g : ∀x ∈ Ω, f (g .x) = f (x)}

The functions g preserve the level sets Ωt = {x : f (x) = t}, that is
if x ∈ Ωt and g ∈ G then g .x ∈ Ωt . So it is easy to verify the
solutions of a level set has a structure of group.
Information a priori , a symmetry subgroup H ⊂ G . If g ∈ H then
x and g .x have the same label f (g .x) = f (x), so belong to the
same class of equivalence. The quotient of Ω by H is denoted by
Ω\H, for x0 ∈ Ω\H then it defines a class of equivalence:

Hx0 = {x ∈ Ω : g ∈ H s.t g .x = x0}

Example: if x0 is an image and f (x0) its label (cat/dog), then by
translating x = g .x0 ∈ Hx0 the label remains the same f (x) = f (x0).
One can then reduce the number of variables (variability) within the
class of equivalence (reduction of dimensionality).
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Symmetry group
Lie group: infinitely small generators

Reduction of dimensionality in the continuous case:
dim(Ω\H) = dim(Ω) − dim(H)

Diffeomorphisms group
Let g : [0, 1]2 → [0, 1]2 be a C1 function acting on the underlying
variable of x , namely u which is a low-dimensionnal quantity:

g .(x(u)) = x(g(u))
Examples

Translation: g .x(u) = x(u − g) with g ∈ R2

Rotation: g .x(u) = x(Rgu) with g ∈ [0, 2π]
Globally invariant to the translation group ⇒ small
Locally invariant to small diffeomorphisms ⇒ HUGE

Continuous transports by successive action of generators f (xi) = f (x0)
Ox = {g .x}g∈G (orbit = differentiable surface of iso-label)
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Understanding deep convolutional networks
Using the information a priori on the symmetry group of f to define the
representation Φ for the final classification/regression (last layer):

f̃ (x) = ⟨Φ(x),w⟩ =
∑

k
wkϕk

In order that f̃ is a good approximation of f , we impose that it has the
same invariants g ∈ G that is G is a symmetry group of Φ.
Two possibilities:

1 G known and low dimension (translation, rotation, ...)
⇒ constructing directly Φ

2 G unknown and high dimension (diffeomorphisms)
⇒ linearization + learning invariant through the classifier.

f̃ (x) = f̃ (g .x) ⇒ ⟨Φ(x),w⟩ = ⟨Φ(g .x),w⟩ ⇒ ⟨Φ(x) − Φ(g .x),w⟩ = 0
Φ(x) − Φ(g .x) ∈ V ⊥ w

⇝ If V is a hyperplan it implies to linearize transformations, by
considering small deformations g .
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Linearization of small deformations
Linearize group actions: g .x = x + τ.x so locally the tangent
hyperplan to the orbit Ox is given by τ (Lie algebra).
For small deformations g .x(u) = x(u − τ(u)) we can write the
action τ as a "global" action (the translation) and a small "local"
action (the deformation), since τ(u) ≈ τ(u0) + ∇τ(u0)(u − u0) then

x(u − τ(u)) = x( (I − ∇τ(u0))(u − u0)︸ ︷︷ ︸
local deformation

+ u0 − τ(u0)︸ ︷︷ ︸
global translation

)

Distance for small deformations: |g |G= ∥τ∥∞+∥∇τ∥∞

We do not know in advance what is the local range of
diffeomorphism symmetries.
Example: to classify images x of handwritten digits, certain
deformations of x will preserve a digit class but modify the class of
another digit.
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Linearization of small deformations
We shall linearize small diffeomorphims g via the change of variable
Φ(x), which is say Lipschitz-continuous if

∃C > 0,∀(x , g) ∈ Ω × G , ∥Φ(g .x) − Φ(x)∥⩽ C |g |G∥x∥

The Radon–Nikodim property proves that the map that transforms
g into Φ(g .x) is almost everywhere differentiable in the sense of
Gâteaux. If |g |G is small, then Φ(g .x) − Φ(x) is closely
approximated by a bounded linear operator of g , which is the
Gâteaux derivative. Locally, it thus nearly remains in a linear
space.

⇒ The Lipschitz property of Φ is difficult to be obtained. Indeed, a local
deformation is a dilation, so the representation will have to be based
on dilations, that is we will need to separate scales with the wavelet
transform.
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Stable invariants
Fourier is not relevant

If Φ(x) = {|x̂(ω)|}ω then:
Invariance to translations xc(t) = x(t − c)

∀c ∈ R, Φ(xc) = Φ(x)

Not Lipschitz stable to small deformation xτ (t) = x(t − τ(t))
where τ(t) = ϵt for example. The Fourier transform of
x(t − τ(t)) = x((1 − ϵ)t) is x̂(ω(1 + ϵ)), so two "bumps" centered
in ω = ±ω0 will be "shifted" toward low frequencies by a quantity
ϵω0, such that they are not superposed anymore and then

∥Φ(xτ ) − Φ(x)∦= ϵ

.
⇒ Wavelets are localized waveforms and are thus stable to
deformations, as opposed to Fourier sinusoidal waves
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Stable invariants
Why wavelets?

Wavelets are uniformly stable to deformations:
If ψλ,τ (t) = ψλ(t − τ(t)) then

∥ψλ − ψλ,τ ∥≤ C sup
t

|∇τ(t)|

Wavelet separate multiscale information
Wavelets provide sparse representation

Kévin Polisano Wavelets and Applications 14/28



Multiscale Wavelet Transform
Complex wavelet ψ(u) = ψa(u) + iψb(u)
Dilated 1D wavelet: ψλ(u) = 2−j/Qψ(2−j/Qu) with λ = 2−j/Q

For images with two variables u = (u1, u2) add a rotation r ∈ G of
angles 2kπ/K for 0 ≤ k < K :

ψλ(u) = 2−2jψ(2−j r−1u), λ = (2−j , r)

Wavelet transform:

Wx =
(

x ⋆ ϕ(u)
x ⋆ ψλ(u)

)
u,λ

If |ϕ̂(ω)|2+
∑

λ|ψ̂λ(ω)|2= 1 then W is unitary: ∥Wx∥2= ∥x∥2
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Stable translation invariance
x ⋆ ψλ is translation covariant, not invariant and∫

x ⋆ ψλ(u) du = 0

Translation invariant representation:
∫

M(x ⋆ ψλ)(u) du
Diffeomorphism stability: M commutes with diffeomorphims
L2 stability: ∥Mh∥= ∥h∥ and ∥Mg − Mh∥≤ ∥g − h∥

⇒ M(h)(u) = |h(u)|=
√

|ha(u)|2+|hb(u)|2
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Wavelet translation invariance
The modulus |x ⋆ ψλ1 |=

√
|x ⋆ ψa

λ1
|2+|x ⋆ ψb

λ1
|2 (pooling) is a

regular envelop
The average |x ⋆ ψλ1 |⋆ϕ(t) is invariant to small translations
relatively to the support of ϕ
Full translation invariance at the limit:

lim
ϕ→1

|x ⋆ ψλ1 |=
∫

|x ⋆ ψλ1(u)|du = ∥x ⋆ ψλ1∥1

First Wavelet transform modulus:

ρW1 = |W1|x =
(

x ⋆ ϕ2J

|x ⋆ ψλ1 |

)
λ1

Second Wavelet transform modulus (for recovering high freq. lost):

|W2||x ⋆ ψλ1 | =
(

|x ⋆ ψλ1 | ⋆ ϕ2J

||x ⋆ ψλ1 | ⋆ψλ2 |

)
λ2

Translation invariance by averaging ||x ⋆ ψλ1 | ⋆ψλ2 | ⋆ ϕ2J , ∀λ1, λ2
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Scattering Network

Credits: S. Mallat
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Scattering Network

Credits: S. Mallat
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Scattering Properties

SJx =


x ⋆ ϕ2J

|x ⋆ ψλ1 |⋆ϕ2J

||x ⋆ ψλ1 |⋆ψλ2 |⋆ϕ2J

|||x ⋆ ψλ1 |⋆ψλ2 |⋆ψλ3 |⋆ϕ2J

...


λ1,λ2,λ1,...

= · · · |W3||W2||W1|x

Lemma: ∥WkDτ − Dτ W − k∥≤ C∥∇τ∥∞ where Dτ x(u) = x(u − τ(u))

Theorem (Mallat et al.)
For appropriate wavelets, a scattering is contractive

∥SJx − SJy∥≤ ∥x − y∥,

translations invariance and deformation stability:

lim
J→+∞

∥SJDτ x − SJx∥≤ C∥∇τ∥∞∥x∥
Credits: S. Mallat
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Scattering Network

Credits: S. Mallat
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Understanding deep convolutional networks
Simplified architecture: Deep Convolutional Trees

Architecture
Convolutional filters Lj : band-limited wavelets
Pooling: L1 norm as averaging
Nonlinear activation ρ: modulus

Φ(x) = SJx (scattering vector)

Credits: S. Mallat
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Experiments and results

MNIST dataset for digit classification: for a training of 50,000
digits the classification error of the Scattering Network was similar
to the Convolutional Network’s (0.4 %)
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Experiments and results
CUReT dataset for textures classification: for a small training set
of textures 200 × 200 in 61 classes (46 per class), the classification
error with the Scattering Network achieves 0.2 %, far better than
Fourier transform’s one (1 %)
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Experiments and results
Scattering coefficients
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Experiments and results
Scattering coefficients
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Experiments and results
Scattering coefficients
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Take home message

Interpretation of convolutional networks
Deep convolutional network are really efficients to approximate
functions in very high dimension
Compute multiscale invariants of complex symmetries and learn
sparse patterns
Many mathematical questions still open (notion of regularity,
complexity, approximation theorems, ...)
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