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Linear time-invariant filtering in classical signal processing

e Time-invariant operator L. If the input f(t) is delayed/shifted by
7, f(t) = f(t — 7), then the output is also delayed/shifted by T:
g(t) = Lf(t) = g(t — 1) = Lf(t)
o Impulse response h of L:

h(t) = Lé(t) = h(t — 7) = Lo,

Proposition

A time-invariant linear filtering L is equivalent to a convolution with the
impulse response h.

Proof. Assume that f is continuous so that f(t) = [~ f(7)é,(t)dr and L is
linear and (weak) continuous hence

LF(1) :/OO F(r)L6, (t) dr
:/OO f(r)h(t — 7)dr = (f % h)(t) O

—0o0
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Linear time-invariant filtering in classical signal processing

e With f[k] = f(kT), the sampled signal is

i flk]o(t — kT)

k=—o0
o Let g(t) = f(t — kT) then
glnl = g(nT) = f(nT — kT) = f((n = k)T) = f[n — k] = (Tkf)[n]

Proposition

A time-invariant linear filtering L is equivalent to a convolution with the
impulse response h.

Proof.

(L) Z FIKIL(8[n — k]) = Z FlK|h[n— k] = (Fxh)[n] O

k=—o0 k=—
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Diagonalization of time-invariant operators

Proposition
Complex exponentials are eigenvectors of convolution operators
Proof. Consider f(t) = /2™t and the sampled signal £(t)

» Continuous case:

[ ei2mEt — / h(T)elQTrf(t—‘r) dr — eizwgt/‘ h(T)efIQTrET dr = %(g) oi2mét
» Discrete case:
LeiZﬂ{nT — Z h[k]ei2‘n’§(n—k)7— _ ei27r§nT Z h[k]e—iQﬁ{kT — H(é—) ei27‘rfnT
k=—oc0 k=—0c0

NB. The Fourier transform of §(t — kT) is e="27¢kT which lead to the
Discrete Time Fourier Transform (DTFT):

H({) _ Z h[k]efi27r£k7 _ ]:( Z h[k](s(t — kT)) = As(g)

k=—oc0 k=—oc0
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The Z-transform

More generally notice that for a complex z:

Z h[k]z"k = z" Z h[k]z™¢ = H(z) 2"

k=—00 k=—00

which involves the linear Z-transform of h defined as:

Z({h k) 1z € C— H(z Z h[k]z=k

k=—o0

» H(z) is the transfer function of L

» DTFT corresponds to the z-transform evaluated in z = /2™ 7T

Properties
o Translation: Z(Tih)(z) = Z({hk_i}x)(z) = z7'H(z)
o Scaling: Z(D,h)(z) = Z(a*{h}k)(2) = H (%)
o Convolution: Z(hy * ho)(2) = Z({3, hithox—1}k)(2) = Hi(2)Ha(2)
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FIR filters

Definition
Let a filter with an impulse response h. The filter is said to be with a
Finite Impulse Response (FIR) if h is finite that is h = {h,}V_, and

H(z) = Z h,z™"  (polynomial in z71)

» The FIR filter difference equation for a discrete time signal f,
output g and filter coefficients h at sample k is:

glk] = (f x h)[k] = h[O]f[k] + h[1]f[k — 1] + - -- + h[N]f[k — N]

Z Z zZ

Xn]

hy
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The role of shift operator in classical signal processing

Let consider the (formal) polynomial representation of the signal f via
its Z-transform:

N—1
F(z) = Z fln]z™"
n=0
as well for the output g = Lf represented by G(z). Then we have:

G
G(z) = F(z)H(z) < H(z) = ngi (transfert function)
z
Shift operator
Let consider a periodic extension of f where the real line is folded
around the circle f, = f, mod & and let define the shift operator which
perform a simple delay

f=|[fh,hA,....,fNn_-1]— g=shift f = [fy_1,f0,..., v_1]

It is clear that Hgpi(z) = z71. Observe the shift invariance with any
other operator L due to the commutativity z~ 1 - H (z) = H/(z) -z~ 1.
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Shift operator on graphs
Analogy between 1-D periodic signal and the ring graph

The (directed) ring graph, associated to a periodic time-serie
f=|[fo,fr,..., 1] T € R" with f[k 4+ n] = f[k], has the following
adjacency matrix:

A =

Notice that g = Af = [f,_1, fo, ..., f,—2]T is the signal f shifted by one.

Figure: A (directed) ring graph
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Filtering operator on graphs

» Using the matricial notation, a filter h on a graph can be in general
represented by the matrix H:

g = Hf

» Let A be an arbitrary adjacency matrix, which play the role of the
shift operator on neighbors. Following the analogy with classical
signal processing, a filter represented by H is said to be
shift-invariant if it commutes with the shift, that is:

AH = HA

» If the characteristic and minimal polynomial of A are equals then
every filter commuting with A is a polynomial in A i.e

K
H=HA)=> hA*
k=0
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Diagonalization of shift-invariant operators on graph

Proposition
The eigenvectors of the shift operator A are the eigenfunctions of the
polynomial filter H.

Proof. Let consider A = UAU~! where U = (uy]-- - |u,) are the eigenvectors
and A = diag(Ag, ..., A\,) is the matrix of eigenvalues of A. Then, it is
straightforward to verify that:

M
=Y hm(UAUTH)™ = UH(A)U™
m=0

where H(N) = diag(H(\1), ..., H(A,)). Finally one has
Hu, = UH(A)U tu, = UH(N)e, = H( A )ug

= invariance of the eigenvectors of the shift operator A with respect to graph
filters.
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Frequency analysis of graph signals
Analogy with the 1D Fourier transform

@ In the 1-D continuous time setting one can decompose a signal on
the Fourier basis of complex exponentials:

+oo .

(o) = [ R
—0o0

where the argument 27¢ determines the frequency of oscillation of

such functions.

o Observe that this basis also corresponds to the eigenfunctions of
82
the 1-D Laplace operator A = — 75

o2 . .
_ﬁe%rltg — (27[_5)2 e27r:t§

=- One can consider the Laplacian matrix L as the shift operator instead
of the adjacency matrix A.
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Frequency analysis of graph signals
Analogy between 1-D periodic signal and the ring graph

The undirected ring graph has the following adjacency matrix:

0100 -0 1
1010 --00
0101 --00

A= _
0000 01
1000 10

2 -1 0 0
-1 2 -1 0

L=D-A=2I-A=
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Circulant matrices and Fourier basis

@ Any circulant matrix C is diagonalizable in the Fourier basis
C =UAUT where

1 1 e 1
1|11 w . Wt
U=—
n .
1wl o (1)
2mi

and w = exp (T) is a primitive n-th root of unity.

@ The columns uy (Fourier modes) of the matrix U are the
eigenvectors of any circulant matrix.

@ Multiplying a vector f € R” by U performs a discrete Fourier
transform (DFT)

<u1>f>
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Graph Fourier basis

Equivalence with classical Fourier basis for the ring graph

@ The undirected ring graph has this circulant Laplacian matrix:

2 -1 0 0 --- 0 -1
-1 2 -1 0 0 o0
o -1 2 -1 0 O
L= .
0 0 0 O 2 -1
-1 0 0 © -1 2
@ The eigendecomposition of the graph Laplacian is
L=UAUT

where the eigenvectors uy are the Fourier modes.
@ The eigenvalues are given by

k
)\k:2—2cosl
n
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Graph reference matrix

Definition
Suppose we have a graph reference matrix R associated to the graph

G=W,& w)as:
Vi#j, Rj#0& (i—j)ef
and suppose it is diagonalizable in C as:
R=UAU!

with U = (u1]- - - |u,) and A = diag(A1,..., A,)
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Graph Fourier modes

Definition
The eigenvectors {uy} of R are considered to be graph Fourier modes
and {\x} their associated graph frequency if:

© (consistency) R is circulant for G reduced to the ring graph

@ (variational interpretation) Re(Ax) or |[Ak| is @ measure of variation
of uy

Laplacian matrix

For undirected graphs R <— L = D — A satisfies the two properties.

Many others possible definitions!

e R« L,=1—-D"Y2AD Y2 (normalized Laplacian)

e R+Ly=1-+ A(A) (deformed Laplacian)

e R« L,, =1—D'A (random walk Laplacian)
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Graph Fourier transform

The case of the normalized Laplacian of undirected graphs

Let consider the graph reference matrix:

R+ L,=1-D"Y2AD"Y2 = UAU"
o U= (u1] -|up) is a graph Fourier basis, each uy is a generalized
(co)sin
o A= d g(A1,...,An) the spectrum of L,, each A\ is a generalized

(squared) frequency and
0:)\1<)\2<)\n<2

@ Variational interpretation:

. N2
Ak:uZLnuk—EZA- [u\;(») u\%ﬂ]

inj
@ The Graph Fourier transform of a graph signal f € R" reads
f=U'f
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The graph Fourier transform encodes the graph structure

Credits: D. Shuman
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Graph filtering

Given a filter H defined in the Fourier space, the signal f filtered by h is

g=UHNUTF

noisy x denoised x4

0.4 0.4
0.2 Xq = Uh(I\)UTx 0.2
node space 0 cocooocmoooooooo > 0
0.2 0.2
0.4 0.4
X = Ux Xq = UXy
1
§0.5
1 0[¥ 1
: 0 1 2 s
graph Fourier 05 A 505
space e ‘\ fxl
0 ~ ~ > 0
0 1 2 X4 = h(A) X 0 1 2
A

Credits: N. Tremblay
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Fast Graph filtering

» Problem: Computing g = UH(A)UTf costs O(n®)

» Solution: To use a polynomial approximation of order p of h:
. P
H) =>a\ = H())
I=1
Indeed, in this case one has:

p p
g=UHNUf~ UHANUTF=U> a/NUTEF=) ayl'f
1=1 =1

~~ only involves matrix-vector multiplication of cost O(p|£|)

Credits: N. Tremblay
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Generalized convolution on graphs

In the vertex domain, the n-th element of the output signal

g=UH(NU'F
is given by this kind of generalized convolution® on the graph:
n—1n—1
g(i) = (Fxh)(i) =D > f)uk(j) AkUk()—Zf(J)h
k=0 j=0

where the transfert function is defined by:
H(A\ ) = ho + hidi + -+ hyAM

and the graph impulse response is:

n—1

hi() = S HOW (D) = (h* 6:)(7) = %(fnh)u)

k=0

!By replacing the complex exponentials i (t) = e®™kt by Laplacian eigenvectors uy(n) in
the classical relationship g(t) = (f » h)(t) = [, 8(K)¥u(t) dk = [ F(K)&(K)i(t) dk.

[ —
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Tikhonov regularization

» We observe a noisy graph signal y = fy + € where € is uncorrelated
additive Gaussian noise, and we want to recover fy which is a
smooth with respect to the underlying graph.

» To enforce this a priori information we penalize the optimization
problem with a regularization term of the form f ' Lf measuring
the smoothness and a fixed ~:

1
J(F) =5 IIf - yl3+7 fTLFF* = argmin||f — y||34+~f Lf
feRn

» The optimal reconstruction is given by

1
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Proof. We want to minimize the objective function
1
IO = Sl = y3TLr

By differentiating
@:f—y—l—2fny:0
of
which results in
f=(+29L)" 1y

In the spectral domain, from L = UAUT and by noting Y = Uy and
F = U'f one finally has

F=(+2yN)"lY

hence the expression
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Windowed Graph Fourier Transform

e Modulation operator for a function f € L?(R) is defined by
(Mef)(t) = 2T f (1)
o Let g € [?(R) a window, the windowed Fourier atom is given by

gu,g(t) = (Mg%g)(t) — g(t _ u)e271'i§t

» By analogy one can define the generalized modulation operator by:

(Mycf)(i) = V/nf (i)uk(i)

» Then a windowed graph Fourier atom by:

gik(j) = (MkTig)(j) = Nuk(j Z G(Ae)ug(i)ue())

» The windowed graph Fourier transform by:

SF(i, k) = (f, gik)
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Wavelets on graph

e The 1D continuous wavelet transform of f € L?(R) at scale a and
position b is given by:

wi(a,b) =% [ 00 (*22) e ax = [ 3 a0 ag

a a

@ The wavelet at scale a centered around b reads:
Vanl) = [ " (23s(€)e e de

» By analogy one can define the wavelet transform of f at node j of the
graph and scale a > 0 by:

Z H a)\k )\k uk( )

» The wavelet on graph is defined as:

Y., =UH(ah)U'4,
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Wavelets on graph

A WAVELET :
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Some applications of wavelets on graph

* Tikhonov regularization for denoising : argmin {||f — y|5 +~f Lf}

Original Noisy

Denoised

® Wavelet denoising : argmin,{|ly — W*a|l> + v |lal,}

Decay of .
1.5) "
wavelet
1 coefficients

0 1000 2000 3000

Figures courtesy of D. Shuman
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Some applications of wavelets on graph
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Figures from Hammond et al., Wavelets on graphs via spectral graph theory, 2011
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Some applications of wavelets on graph
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Figures from Hammond et al., Wavelets on graphs via spectral graph theory, 2011
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Some applications of wavelets on graph

Figures from Hammond et al., Wavelets on graphs via spectral graph theory, 2011
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