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Linear time-invariant filtering in classical signal processing
Time-invariant operator L. If the input f (t) is delayed/shifted by
τ , fτ (t) = f (t − τ), then the output is also delayed/shifted by τ :

g(t) = Lf (t)⇒ g(t − τ) = Lfτ (t)
Impulse response h of L:

h(t) = Lδ(t)⇒ h(t − τ) = Lδτ

Proposition
A time-invariant linear filtering L is equivalent to a convolution with the
impulse response h.
Proof. Assume that f is continuous so that f (t) =

∫∞
−∞ f (τ)δτ (t) dτ and L is

linear and (weak) continuous hence

Lf (t) =
∫ ∞

−∞
f (τ)Lδτ (t) dτ

=
∫ ∞

−∞
f (τ)h(t − τ) dτ = (f ∗ h)(t) □
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Linear time-invariant filtering in classical signal processing
With f [k] = f (kT ), the sampled signal is

fs(t) =
∞∑

k=−∞
f [k]δ(t − kT )

Let g(t) = f (t − kT ) then

g [n] = g(nT ) = f (nT − kT ) = f ((n − k)T ) = f [n − k] = (Tk f )[n]

Proposition
A time-invariant linear filtering L is equivalent to a convolution with the
impulse response h.
Proof.

(Lfs)(nT ) =
∞∑

k=−∞

f [k]L(δ[n − k]) =
∞∑

k=−∞

f [k]h[n − k] = (f ⋆ h)[n] □
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Diagonalization of time-invariant operators

Proposition
Complex exponentials are eigenvectors of convolution operators
Proof. Consider f (t) = ei2πξt and the sampled signal fs(t)
▶ Continuous case:

L ei2πξt =
∫ ∞

−∞
h(τ)ei2πξ(t−τ) dτ = ei2πξt

∫ ∞

−∞
h(τ)e−i2πξτ dτ = ĥ(ξ) ei2πξt

▶ Discrete case:

L ei2πξnT =
∞∑

k=−∞

h[k]ei2πξ(n−k)T = ei2πξnT
∞∑

k=−∞

h[k]e−i2πξkT = H(ξ) ei2πξnT

NB. The Fourier transform of δ(t − kT ) is e−i2πξkT , which lead to the
Discrete Time Fourier Transform (DTFT):

H(ξ) =
∞∑

k=−∞

h[k]e−i2πξkT = F
( ∞∑

k=−∞

h[k]δ(t − kT )
)

= f̂s(ξ)
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The Z-transform
More generally notice that for a complex z :

L zn =
∞∑

k=−∞
h[k]zn−k = zn

∞∑
k=−∞

h[k]z−k = H(z) zn

which involves the linear Z-transform of h defined as:

Z({hk}k) : z ∈ C 7→ H(z) =
∞∑

k=−∞
h[k]z−k

▶ H(z) is the transfer function of L
▶ DTFT corresponds to the z-transform evaluated in z = ei2πξT

Properties
Translation: Z(Tlh)(z) = Z({hk−l}k)(z) = z−lH(z)
Scaling: Z(Dah)(z) = Z(ak{hk}k)(z) = H

( z
a
)

Convolution: Z(h1 ∗ h2)(z) = Z({
∑

l h1,lh2,k−l}k)(z) = H1(z)H2(z)
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FIR filters

Definition
Let a filter with an impulse response h. The filter is said to be with a
Finite Impulse Response (FIR) if h is finite that is h = {hn}Nn=0 and

H(z) =
N∑

n=0
hnz−n (polynomial in z−1)

▶ The FIR filter difference equation for a discrete time signal f ,
output g and filter coefficients h at sample k is:

g [k] = (f ⋆ h)[k] = h[0]f [k] + h[1]f [k − 1] + · · ·+ h[N]f [k − N]
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The role of shift operator in classical signal processing
Let consider the (formal) polynomial representation of the signal f via
its Z-transform:

F (z) =
N−1∑
n=0

f [n]z−n

as well for the output g = Lf represented by G(z). Then we have:

G(z) = F (z)H(z)⇐⇒ H(z) = G(z)
F (z) (transfert function)

Shift operator
Let consider a periodic extension of f where the real line is folded
around the circle fn = fn mod N and let define the shift operator which
perform a simple delay

f = [f0, f1, . . . , fN−1] 7→ g = shift f = [fN−1, f0, . . . , fN−1]

It is clear that Hshift(z) = z−1. Observe the shift invariance with any
other operator L due to the commutativity z−1 · HL(z) = HL(z) · z−1.
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Shift operator on graphs
Analogy between 1-D periodic signal and the ring graph

The (directed) ring graph, associated to a periodic time-serie
f = [f0, f2, . . . , fn−1]⊤ ∈ Rn with f [k + n] = f [k], has the following
adjacency matrix:

A =


0 0 · · · 1
1 0 · · · 0
...

... . . . ...
0 · · · 1 0


Notice that g = Af = [fn−1, f0, . . . , fn−2]⊤ is the signal f shifted by one.

f1 f2 f3 f4 fn−1 fn

Figure: A (directed) ring graph
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Filtering operator on graphs
▶ Using the matricial notation, a filter h on a graph can be in general

represented by the matrix H:

g = Hf

▶ Let A be an arbitrary adjacency matrix, which play the role of the
shift operator on neighbors. Following the analogy with classical
signal processing, a filter represented by H is said to be
shift-invariant if it commutes with the shift, that is:

AH = HA

▶ If the characteristic and minimal polynomial of A are equals then
every filter commuting with A is a polynomial in A i.e

H = H(A) =
K∑

k=0
hkAk
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Diagonalization of shift-invariant operators on graph

Proposition
The eigenvectors of the shift operator A are the eigenfunctions of the
polynomial filter H.

Proof. Let consider A = UΛU−1 where U = (u1|· · · |un) are the eigenvectors
and Λ = diag(λ1, . . . , λn) is the matrix of eigenvalues of A. Then, it is
straightforward to verify that:

H = H(A) =
M∑

m=0
hm(UΛU−1)m = UH(Λ)U−1

where H(Λ) = diag(H(λ1), . . . ,H(λn)). Finally one has

Huk = UH(Λ)U−1uk = UH(Λ)ek = H(λk)uk

⇒ invariance of the eigenvectors of the shift operator A with respect to graph
filters.
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Frequency analysis of graph signals
Analogy with the 1D Fourier transform

In the 1-D continuous time setting one can decompose a signal on
the Fourier basis of complex exponentials:

f (t) =
∫ +∞

−∞
f̂ (ξ)e2πitξdξ

where the argument 2πξ determines the frequency of oscillation of
such functions.
Observe that this basis also corresponds to the eigenfunctions of
the 1-D Laplace operator ∆ = − ∂2

∂t2 :

− ∂2

∂t2 e2πitξ = (2πξ)2 e2πitξ

⇒ One can consider the Laplacian matrix L as the shift operator instead
of the adjacency matrix A.
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Frequency analysis of graph signals
Analogy between 1-D periodic signal and the ring graph

The undirected ring graph has the following adjacency matrix:

A =



0 1 0 0 · · · 0 1
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 1
1 0 0 0 · · · 1 0



L = D− A = 2I− A =



2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 2 −1
−1 0 0 0 · · · −1 2
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Circulant matrices and Fourier basis
Any circulant matrix C is diagonalizable in the Fourier basis
C = UΛU⊤ where

U = 1√
n


1 1 . . . 1
1 ω . . . ωn−1

...
...

...
1 ωn−1 . . . ω(n−1)2


and ω = exp

(
2πi
n

)
is a primitive n-th root of unity.

The columns uk (Fourier modes) of the matrix U are the
eigenvectors of any circulant matrix.
Multiplying a vector f ∈ Rn by U performs a discrete Fourier
transform (DFT)

f̂ = U⊤f =

⟨u1, f⟩
...

⟨un, f⟩
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Graph Fourier basis
Equivalence with classical Fourier basis for the ring graph

The undirected ring graph has this circulant Laplacian matrix:

L =



2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 2 −1
−1 0 0 0 · · · −1 2


The eigendecomposition of the graph Laplacian is

L = UΛU⊤

where the eigenvectors uk are the Fourier modes.
The eigenvalues are given by

λk = 2− 2 cos πk
n
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Graph reference matrix

Definition
Suppose we have a graph reference matrix R associated to the graph
G = (V, E ,w) as:

∀i ̸= j , Rij ̸= 0⇔ (i → j) ∈ E

and suppose it is diagonalizable in C as:

R = UΛU−1

with U = (u1|· · · |un) and Λ = diag(λ1, . . . , λn)
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Graph Fourier modes

Definition
The eigenvectors {uk} of R are considered to be graph Fourier modes
and {λk} their associated graph frequency if:

1 (consistency) R is circulant for G reduced to the ring graph
2 (variational interpretation) Re(λk) or |λk | is a measure of variation

of uk

Laplacian matrix
For undirected graphs R← L = D− A satisfies the two properties.

Many others possible definitions!
R← Ln = I−D−1/2AD−1/2 (normalized Laplacian)
R← Ld = I− A

λmax(A)
(deformed Laplacian)

R← Lrw = I−D−1A (random walk Laplacian)
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Graph Fourier transform
The case of the normalized Laplacian of undirected graphs

Let consider the graph reference matrix:

R← Ln = I−D−1/2AD−1/2 = UΛU⊤

U = (u1|· · · |un) is a graph Fourier basis, each uk is a generalized
(co)sine
Λ = diag(λ1, . . . , λn) the spectrum of Ln, each λk is a generalized
(squared) frequency and

0 = λ1 ⩽ λ2 ⩽ λn ⩽ 2

Variational interpretation:

λk = u⊤
k Lnuk = 1

2
∑
i∼j

Aij

[
uk(i)√

di
− uk(j)√

dj

]2

The Graph Fourier transform of a graph signal f ∈ Rn reads

f̂ = U⊤f
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The graph Fourier transform encodes the graph structure

Credits: D. Shuman
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Graph filtering
Given a filter H defined in the Fourier space, the signal f filtered by h is

g = UH(Λ)U⊤f

Credits: N. Tremblay
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Fast Graph filtering
▶ Problem: Computing g = UH(Λ)U⊤f costs O(n3)
▶ Solution: To use a polynomial approximation of order p of h:

H̃(λ) =
p∑

l=1
αlλ

l ≈ H(λ)

Indeed, in this case one has:

g = UH(Λ)U⊤f ≈ UH̃(Λ)U⊤f = U
p∑

l=1
αlΛlU⊤f =

p∑
l=1

αlLl f

⇝ only involves matrix-vector multiplication of cost O(p|E|)

Credits: N. Tremblay
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Generalized convolution on graphs
In the vertex domain, the n-th element of the output signal

g = UH(Λ)U⊤f

is given by this kind of generalized convolution1 on the graph:

g(i) = (f ∗ h)(i) =
n−1∑
k=0

n−1∑
j=0

f (j)uk(j)H(λk)uk(i) =
n−1∑
j=0

f (j)hi(j)

where the transfert function is defined by:

H(λk) = h0 + h1λk + · · ·+ hMλ
M
k

and the graph impulse response is:

hi(j) =
n−1∑
k=0

H(λk)uk(i)uk(j) = (h ∗ δi)(j) = 1√
n (Tih)(j)

1By replacing the complex exponentials ψk(t) = e2πikt by Laplacian eigenvectors uk(n) in
the classical relationship g(t) = (f ∗ h)(t) =

∫
R ĝ(k)ψk(t) dk =

∫
R f̂ (k)ĝ(k)ψk(t) dk.

Kévin Polisano Wavelets and Applications 21/27



Tikhonov regularization
▶ We observe a noisy graph signal y = f0 + ϵ where ϵ is uncorrelated

additive Gaussian noise, and we want to recover f0 which is a
smooth with respect to the underlying graph.

▶ To enforce this a priori information we penalize the optimization
problem with a regularization term of the form f⊤Lf measuring
the smoothness and a fixed γ:

J(f) = 1
2∥f − y∥22+γ f⊤Lff⋆ = arg min

f∈Rn
∥f − y∥22+γ f⊤Lf

▶ The optimal reconstruction is given by

f⋆ = H(L)y, H(λ) = 1
1 + 2γλ
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Proof. We want to minimize the objective function

J(f) = 1
2∥f − y∥22+γ f⊤Lf

By differentiating
∂J
∂f = f − y + 2γLf = 0

which results in
f = (I + 2γL)−1y

In the spectral domain, from L = UΛU⊤ and by noting Y = U⊤y and
F = U⊤f one finally has

F = (I + 2γΛ)−1Y

hence the expression
H(λ) = 1

1 + 2γλ
□

Kévin Polisano Wavelets and Applications 23/27



Windowed Graph Fourier Transform
Modulation operator for a function f ∈ L2(R) is defined by

(Mξf )(t) = e2πiξt f (t)

Let g ∈ L2(R) a window, the windowed Fourier atom is given by

gu,ξ(t) = (MξTug)(t) = g(t − u)e2πiξt

▶ By analogy one can define the generalized modulation operator by:

(Mk f )(i) =
√

nf (i)uk(i)

▶ Then a windowed graph Fourier atom by:

gi ,k(j) = (MkTig)(j) = Nuk(j)
n−1∑
ℓ=0

G(λℓ)uℓ(i)uℓ(j)

▶ The windowed graph Fourier transform by:

Sf (i , k) = ⟨f , gi ,k⟩
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Wavelets on graph
The 1D continuous wavelet transform of f ∈ L2(R) at scale a and
position b is given by:

Wf (a, b) = 1
a

∫
R
ψ∗
(x − b

a

)
f (x) dx =

∫
R
ψ̂∗(aξ)f̂ (ξ)ei2πξb dξ

The wavelet at scale a centered around b reads:

ψa,b(x) =
∫
R
ψ̂∗(aξ)δ̂b(ξ)ei2πξx dξ

▶ By analogy one can define the wavelet transform of f at node i of the
graph and scale a > 0 by:

Wf (i , a) =
n−1∑
k=0

H(aλk)f̂ (λk)uk(i)

▶ The wavelet on graph is defined as:

ψa,b = UH(aΛ)U⊤δa

Kévin Polisano Wavelets and Applications 25/27



Wavelets on graph
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Some applications of wavelets on graph
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