Nous présentons dans ce papier une approche convexe du problème de la reconstruction de lignes dans les images. Suivant le paradigme récent de la super-résolution, nous considérons une pénalisation basée sur une norme atomique et nous résolvons ce problème d’optimisation au moyen d’un algorithme primal-dual. Ce modèle parcimonieux permet la reconstruction de lignes à partir de mesures basse résolution, même en présence d’un niveau élevé de bruit ou de flou de diffraction. En outre, une méthode de Prony appliquée sur les lignes et les colonnes de l’image restaurée fournit une estimation spectrale des paramètres des lignes à détecter, avec une précision sous-pixellique.